Problem set 3

Turn in Monday 2008-01-28 in class. Turn in only the 'Problems' section. The other sections are for your own practice.

Warmups

Warmup problems are quick problems for you to check your understanding; don't turn them in.

1. Draw a picture to show that

$$
(x+y)^{2}=x^{2}+2 x y+y^{2} .
$$

2. Estimate $\sqrt{26}$ by taking out the big part.

Problems

Turn in solutions to these problems.
3. Estimate $\sqrt[3]{9}$.
4. Use the small-angle approximation for $\sin \theta$ to show that

$$
\cos \theta \approx 1-\frac{\theta^{2}}{2}
$$

for small θ.
5. Riemann's zeta function

$$
\zeta(s)=\sum_{1}^{\infty} \frac{1}{n^{s}}
$$

is important for statistical physics, for the approximate analysis of random walks, for the theory of prime numbers, and for much else. In this problem you estimate $\zeta(3 / 2)$, which is the $\operatorname{sum} S=\sum_{1}^{\infty} n^{-3 / 2}$.
a. Sketch $f(n)=n^{-3 / 2}$ and, on the same diagram, draw rectangles to illustrate the sum S.
b. Use the pictorial method to estimate the sum, and compare the estimate against the true value (approximately 2.612).
6. You want to cut a $3 \times 3 \times 3$ cube into 27 unit cubes. What is the minimum number of knife cuts that you must make? No funky knife tricks: only planar cuts!

Bonus problems

Bonus problems are more difficult but optional problems for those who are curious.
7. You want to cut a unit cube into two pieces each with volume $1 / 2$. What dividing surface, which might be curved, has the smallest surface area?

