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1 Introduction 

Sarkovskii’s theorem is a remarkable result in dynamical systems, specifically in the weakness 
of its hypotheses. For continuous maps from the real line to itself, the theorem lets us deduce 
the existence of cycles of certain periods from the existence of cycles of a different period. 

A special case of the theorem states that if the function has a cycle of period three it has 
cycles of all periods. To state the general theorem we must first define the Sarkovskii ordering 

on the natural numbers: 

3 ⊲ 5 ⊲ 7 ⊲ · · · ⊲ 2 · 3 ⊲ 2 · 5 ⊲ 2 · 7 ⊲ · · · ⊲ 22 · 3 ⊲ 22 · 5 ⊲ 22 · 7 ⊲ · · · 

⊲ 23 · 3 ⊲ 23 · 5 ⊲ 23 · 7 ⊲ · · · · · · ⊲ 23 
⊲ 22 

⊲ 2 ⊲ 1. 

That is, first all odd numbers greater than one in increasing order, followed by 2 times 
those numbers, then by 22 times them, then 23, and so on. The lists all the natural numbers 
except powers of 2. Then one lists all the powers of 2 in decreasing order. Using this notation 
Sarkovskii’s theorem states: 

Theorem 1.1. If f : R → R is a continuous function that has a cycle of period n, than it 
has cycles of all periods that follow n in the Sarkovskii order. 

The converse of Sarkovskii’s theorem is also true. 

Theorem 1.2. For each natural number n there exists a continuous function f : R → R 

that has a cycle of period n but no cycles of periods that precede n in the Sarkovskii order. 

[Devaney] has a partial proof of Sarkovskii’s theorem and its converse, here we finish the 
proof. 
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2 Sarkovskii’s Theorem 

In ([Devaney], section 1.10) Sarkovskii’s theorem was shown for the cases when n is odd and 
when n is a power of 2. We now prove the case when n = p2m . 

Proof. We may assume f has no cycles of period q2k with q > 1 and odd and k < m. Now 
since f has a cycle of period n = p2m , f 2m 

has a cycle of period p. Therefore by the case 
with n = p it has cycles of all odd periods greater than p and all even periods. A cycle of 
f 2m 

of period q2ℓ with ℓ > 0 corresponds to a cycle of period q2k+ℓ for f , and a cycle of 
odd period q > 1 for f 2m 

corresponds to one for f of period q2k with k ≤ m. By our initial 
assumption this period must be q2m . Finally to see that we have cycles for all powers of 2 
notice that the above argument has shown that we have cycles for all 2k with k > m, hence 
applying the case with n = 2m+1 gives us all powers of 2. 

3 Converse 

Lemma 3.1. For each natural number n > 1, there exists a continuous function, f , with a 
cycle of period 2n + 1 but not one of 2n − 1. 

Proof. Define the map f : [0, 2n] → [0, 2n] on the integers by 

f(0) = n 

f(k) = 2n + 1 − k for 0 < k ≤ n 

f(k) = 2n − k for n < k ≤ 2n 

so that 1 has period 2n + 1, specifically (0, n, n + 1, n − 1, n + 2, n − 2, n + 3, · · · , 2n − 1, 
1, 2n). Let f be linear between these integers. 

1Note that p = n + 
3 

is a fixed point of f . Also observe that if x > p we must have f(x) < p, 
and 1 < x < p implies f(x) > p. Hence, any cycle with odd period greater than 1 must 
contain a point in the interval [0, 1]. However, it is easy to check by induction that for 
0 ≤ k < n, f 2k+1([0, 1]) = [n− k, 2n]. In particular, f 2n−1([0, 1]) = [1, 2n]. So f cannot have 
any cycles of period 2n − 1. 

Lemma 3.2. Let S be the set of cycle periods of a continuous function f . Than there exists 
a function F the set of whose cycle periods is precisely {1} ∪ {2k|k ∈ S}. 

Proof. This is shown in ([Devaney], pp. 67-68). 
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We are now ready to prove the converse of Sarkovskii’s theorem. 

Proof. First notice that if n has an immediate predecessor in the Sarkovskii ordering it 
suffices to show there exists a function with a cycle of period n but not one whose period 
precedes n in the Sarkovskii ordering. 

Case 1 (n is odd and greater than 1): this is just lemma 3.1. 

Case 2 (n = m2k where m > 3 is odd): we will show this by induction on k. For k = 0, 
this reduces to case 1. Now suppose f has a cycle of period m2k−1 but not one of period 
(m − 2)2k−1 . Then by lemma 3.2 there exists a function with a period-m2k cycle but not a 
period-(m − 2)2k cycle. 

Case 3 (n = 3 · 2k): we will also show this case by induction on k. We need a function that 
has a cycle of period 3 · 2k but no cycles of period m2k−1 for odd m > 1. This is obvious 
if k = 0 since there clearly exists a function with a cycle of period 3 and cycle must have 
integral periods. If this is true for 3 · 2k−1, this must also be true for 3 · 2k by lemma 3.2. 

Case 4 (n = 2k): we again proceed by induction on k. For k = 0 we must exhibit a function 
that has a fixed point and no other cycles, for example a constant. Now if we have a function 
with a cycle of period 2k−1 but not one of period 2k, then by lemma 3.2 there exists a function 
with a cycle of period 2k but not one of period 2k+1 . 
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