Newton's Method

Genya Zaytman

April 27, 2005

1 Construction

Suppose we want to find a root of F, that is solution of $F(x)=0$. For most functions we can't algebraically solve the equations and must use numerical techniques. One method for doing this, that you may have seen in calculus, is the Newton-Raphson method. Given an initial guess, x_{0}, draw the tangent to the graph of F at $\left(x_{0}, F\left(x_{0}\right)\right)$. Unless we have had the bad luck of picking a critical point of F, this line intersects the x-axis at a new point, x_{1}, this point is out new guess. Algebraically we get

$$
x_{1}=x_{0}-\frac{F\left(x_{0}\right)}{F^{\prime}\left(x_{0}\right)} .
$$

Newton's method consists of iterating this procedure. Hence we define the Newton iteration function associated to F to be

$$
N(x)=x-\frac{F(x)}{F^{\prime}(x)} .
$$

2 Convergence

We must first define the multiplicity of a root.
Definition. A root x_{0} of F has multiplicity k, if $F^{[k-1]}\left(x_{0}\right)=0$, but $F^{[k]}\left(x_{0}\right) \neq 0$. Here $F^{[k]}$ is the $k^{\text {th }}$ derivative of F.

If x_{0} is a root of F with multiplicity k, F can be written in the form $F(x)=\left(x-x_{0}\right)^{k} G(x)$ where G doesn't have a root at x_{0}. Note, however, that the multiplicity of a root can be infinite.

Newton's Fixed Point Theorem. Suppose F is a (sufficiently differentiable) function and N is its associated Newton iteration function. Then, assuming all roots of F have finite multiplicity, x_{0} is a root of multiplicity k if and only if x_{0} is a fixed point of N. Moreover, such a fixed point is always attracting.

Proof. Suppose first that x_{0} has multiplicity 1, i.e., $F\left(x_{0}\right)=0$, but $F^{\prime}\left(x_{0}\right) \neq 0$. Then it is clear that $N\left(x_{0}\right)=x_{0}$. Conversely, $N\left(x_{0}\right)=x_{0}$ implies $F\left(x_{0}\right)=0$. Next, we compute

$$
N^{\prime}(x)=\frac{F(x) F^{\prime \prime}(x)}{\left(F^{\prime}(x)\right)^{2}}
$$

using the quotient rule. Hence if x_{0} has multiplicity $1, N^{\prime}\left(x_{0}\right)=0$ so x_{0} is indeed attracting.
For the general case, see text.

Despite the above theorem, Newton's method doesn't always converge. One problem is that F might not be differentiable. For example, if $F(x)=x^{1 / 3}$, then $N(x)=-2 x$ which has a repelling fixed point at 0 , the root of F.

Even if F is differentiable, there may still be problems with cycles. Let $F(x)=x^{3}-5 x$. Then we see

$$
N(x)=x-\frac{x^{3}-5 x}{3 x^{2}-5}
$$

This has a cycle since $N(1)=-1$ and $N(-1)=1$. Therefore if we had made the initial guess $x_{0}=1$, Newton's method would have gotten stuck. In this case the cycle is repelling and so most initial guesses converge to a root.

This is not always the case. Consider $F(x)=\left(x^{2}-1\right)\left(x^{2}+A\right)$. From the proof of Newton's fixed point theorem, N has critical points at the places where $F^{\prime \prime}$ vanishes. Hence the points

$$
c_{ \pm}= \pm \sqrt{\frac{1-A}{6}}
$$

are critical for N. If we set $A=(29-\sqrt{720}) / 11$, the points $c_{ \pm}$lie on a 2 -cycle, which is therefore attracting.

