18.091

Lecture 1
Jeremy Hurwitz
2/9/05

1. What is a dynamical system?
1.1.Any system that changes over time
a) Continual: Orbits
b)Discrete: Compound Interest
2. Iteration: A process that is repeated over and over again.
a) The output is sent back into the function as the new input
b) Notation: The n -th iteration is written as $\mathrm{F}^{\mathrm{n}}(\mathrm{x})$
2.2. Example 1: For compounding interest at a rate of 10% per year:

$$
\begin{aligned}
& \mathrm{A}_{0}=\$ 100 \\
& \mathrm{~A}_{1}=\$ 110 \\
& \mathrm{~A}_{2}=\$ 121 \\
& \mathrm{~A}_{3}=\ldots . .
\end{aligned}
$$

a) Can be modeled by an iteration $\mathrm{I}(\mathrm{x})=1.1 \mathrm{x}$
$\mathrm{A}_{0}=\$ 100$
$\mathrm{A}_{1}=\mathrm{I}(100)=1.1 * 100=\$ 110$
$\mathrm{A}_{2}=\mathrm{I}(121)=\mathrm{I}(\mathrm{I}(100))=\$ 121$
$\mathrm{A}_{3}=\mathrm{I}^{3}(\mathrm{~A})$
b) Can be evaluated in general using $\mathrm{A}_{\mathrm{n}}=(1.1)^{\mathrm{n}} \mathrm{A}$
2.3. Example 2: Finding Square Roots:
a) Need an algorithm. To find V_{n} :

1) Make a guess x
2) Average x and n / x
3) Use the result as your new guess
4) Repeat until guess is good enough
b) Proof of Method:

Given $\mathrm{x}, \mathrm{n}>0$, we have two cases:
Case 1:
Case 2:
$\sqrt{n}<x$
$\sqrt{ } \mathrm{n}>\mathrm{x}$
$\mathrm{n}<\mathrm{x} \sqrt{ } \mathrm{n}$
$\mathrm{n}>\mathrm{x} \sqrt{ } \mathrm{n}$
$\mathrm{n} / \mathrm{x}<\sqrt{\mathrm{n}}$
$n / x>\sqrt{ } n$
In either case, $\sqrt{ } \mathrm{n}$ is between n and n / G, so by averaging, we narrow the range in which $\sqrt{ } \mathrm{n}$ can lie.
c) For $\mathrm{n}=10$ and an initial guess $\mathrm{x}=1$

Iteration	Guess	Guess 2	Average
1	1	1	5.5
2	5.5	30.25	3.65909
3	3.65909	13.3889	3.30493
4	3.30493	10.9226	3.16536
5	3.16536	10.0195	

2.4. Changing from continuous to discrete:
a) Continually-compounded Interest:

$$
\mathrm{A}(\mathrm{t})=\mathrm{A}_{0} \mathrm{e}^{\mathrm{kt}}[\mathrm{t}=\text { time in years }] \cdots \mathrm{A}_{\mathrm{n}}=\mathrm{A}_{0} \mathrm{e}^{\mathrm{kn}}[\mathrm{n}=\# \text { of years }]
$$

- Changed from continuous to discrete with an iteration $I(x)=\left(e^{k}\right) x$
b) Planetary Orbits

Draw an imaginary plane in space and look at the points where the orbit intersects the plane
c) Gains some simplicity at the expense of some information

- Discrete, instead of continuous
- No information about behavior in between iterations

3. Orbits:
3.1.Informally - The outputs of an iteration listed in the order that they are achieved
3.2.Formally - Given $x_{0} \in \mathbf{R}$, the orbit of x_{0} under F is the sequence of points x_{0}, x_{1}, x_{2} such that $\mathrm{x}_{\mathrm{n}}=\mathrm{F}^{\mathrm{n}}\left(\mathrm{x}_{0}\right)$
3.3.Useful things we can say about orbits:
a) Limit as $n \rightarrow \infty$

- $\mathrm{S}(\mathrm{x}) \rightarrow \sqrt{ } \mathrm{n}$
b) Are there any patterns?

4. Types of Orbits:
4.1. Fixed Points: Definition: $\mathrm{F}\left(\mathrm{x}_{0}\right)=\mathrm{x}_{0}$, for some x_{0}

- If $a=\sqrt{ } n, S(a)=a$
4.2.Periodic Orbits / Cycles: Definition: $\mathrm{F}^{\mathrm{k}}\left(\mathrm{x}_{0}\right)=\mathrm{x}_{0}$, for some k, x_{0}
- If $F(x)=5-x$

$$
F(5)=0 \quad F(0)=5
$$

- Called a 2-cycle
b) Finding a k-cycle
- Solve the equation $F^{k}(x)=x$
- If F is a quadratic function, this has degree 2^{k}. In general, that is impossible to solve exactly.
c) Note that if F has a k-cycle, then it has cycles of length nk, for all integers n
- $\mathrm{F}^{3 \mathrm{k}}\left(\mathrm{x}_{0}\right)=\mathrm{F}^{\mathrm{k}}\left(\mathrm{F}^{2 \mathrm{k}}\left(\mathrm{x}_{0}\right)\right)=\mathrm{F}^{2 \mathrm{k}}\left(\mathrm{x}_{0}\right)=\ldots=\mathrm{x}_{0}$
- Prime Period: $\mathrm{n}=1$
4.3.Eventually Fixed: Definition: $\mathrm{F}^{\mathrm{k}}\left(\mathrm{x}_{0}\right)=\mathrm{x}^{*}$, for all k sufficiently large a) $F(x)=x^{2}-1, x_{0}=(\sqrt{5}+1) / 2$
$(\sqrt{ } 5+1) / 2,0,0,0, \ldots$.
4.4. Eventually Periodic: Definition: $\mathrm{F}^{\mathrm{m}}\left(\mathrm{x}_{0}\right)=\mathrm{F}^{\mathrm{n}}\left(\mathrm{x}_{0}\right)$, for some m, n greater than 1
a) $F(x)=x^{2}-1, x_{0}=\sqrt{ }(\sqrt{ } 2+1)$
$\sqrt{ }(\sqrt{ } 2+1), \sqrt{ } 2,1,0,-1,0,-1,0, \ldots .$.

5. Computers
5.1.Uses:
a) Visualizing orbits
b) Approximating values:

- solving $F(x)=x$
- finding square roots
5.2.Shortfalls:
a) Rounding Errors!
- Table on page 23
- If x is close enough to zero, the computer will round to zero, and the orbit will become fixed, instead of remaining chaotic like it should.

