18.091 Lecture 1 Jeremy Hurwitz 2/9/05

- 1. What is a dynamical system?
 - 1.1.Any system that changes over timea) Continual: Orbitsb) Discrete: Compound Interest

2. Iteration: A process that is repeated over and over again.

a) The output is sent back into the function as the new input
b)*Notation:* The n-th iteration is written as Fⁿ(x)

2.2. Example 1: For compounding interest at a rate of 10% per year:

 $A_{0} = \$100$ $A_{1} = \$110$ $A_{2} = \$121$ $A_{3} =$ a) Can be modeled by an iteration I(x) = 1.1x $A_{0} = \$100$ $A_{1} = I(100) = 1.1*100 = \110 $A_{2} = I(121) = I(I(100)) = \121 $A_{3} = I^{3}(A)$ b) Can be evaluated in general using $A_{n} = (1.1)^{n}A$

- 2.3. Example 2: Finding Square Roots:
 - a) Need an algorithm. To find \sqrt{n} :
 - 1) Make a guess x
 - 2) Average x and n/x
 - 3) Use the result as your new guess
 - 4) Repeat until guess is good enough
 - b)Proof of Method:

Given x, n > 0, we have two cases:Case 1:Case 2: $\sqrt{n} < x$ $\sqrt{n} > x$ $n < x\sqrt{n}$ $n > x\sqrt{n}$ $n/x < \sqrt{n}$ $n/x > \sqrt{n}$

In either case, \sqrt{n} is between n and n/G, so by averaging, we narrow the range in which \sqrt{n} can lie.

c)For	n=1	0	and	an	initial	guess	x=1
Υ.	, 1 01			unu	un	minu	Sacos	7 1 I

Iteration	Guess	Guess ²	Average
1	1	1	5.5
2	5.5	30.25	3.65909
3	3.65909	13.3889	3.30493
4	3.30493	10.9226	3.16536
5	3.16536	10.0195	

2.4. Changing from continuous to discrete:

- a) Continually-compounded Interest: A(t) = A₀e^{kt} [t= time in years] ----> A_n = A₀e^{kn} [n= # of years]
 Changed from continuous to discrete with an iteration I(x) = (e^k)x
- b)Planetary Orbits

Draw an imaginary plane in space and look at the points where the orbit intersects the plane

c) Gains some simplicity at the expense of some information

- Discrete, instead of continuous
- No information about behavior in between iterations
- 3. Orbits:
 - 3.1.Informally The outputs of an iteration listed in the order that they are achieved
 - 3.2. Formally Given $x_0 \in \mathbf{R}$, the orbit of x_0 under F is the sequence of points x_0, x_1, x_2 such that $x_n = F^n(x_0)$

3.3.Useful things we can say about orbits:

a) Limit as $n \rightarrow \infty$

• $S(x) \rightarrow \sqrt{n}$

b)Are there any patterns?

4. Types of Orbits:

4.1 Fixed Points: *Definition*: $F(x_0) = x_0$, for some x_0

• If $a=\sqrt{n}$, S(a)=a

⁴ 2 Periodic Orbits / Cycles: *Definition*: $F^{k}(x_{0}) = x_{0}$, for some k, x_{0}

- If F(x) = 5 x
 - F(5) = 0F(0) = 5
- Called a 2-cycle

b)Finding a k-cycle

- Solve the equation $F^{k}(x) = x$
- If F is a quadratic function, this has degree 2^k . In general, that is impossible to solve exactly.

c) Note that if F has a k-cycle, then it has cycles of length nk, for all integers n

- $F^{3k}(x_0) = F^k(F^{2k}(x_0)) = F^{2k}(x_0) = \ldots = x_0$
- Prime Period: n=1
- 4.3.Eventually Fixed: *Definition:* $F^k(x_0) = x^*$, for all k sufficiently large a) $F(x) = x^2 - 1$, $x_0 = (\sqrt{5} + 1)/2$ $(\sqrt{5} + 1)/2$, 0, 0, 0,
- 4.4. Eventually Periodic: *Definition:* $F^{m}(x_{0}) = F^{n}(x_{0})$, for some m,n greater than 1 a) $F(x) = x^{2} - 1$, $x_{0} = \sqrt{(\sqrt{2} + 1)}$ $\sqrt{(\sqrt{2} + 1)}$, $\sqrt{2}$, 1, 0, -1, 0, -1, 0,

5. Computers

- 5.1.Uses:
 - a) Visualizing orbits
 - b)Approximating values:
 - solving F(x)=x
 - finding square roots

5.2.Shortfalls:

a) Rounding Errors!

- Table on page 23
- If x is close enough to zero, the computer will round to zero, and the orbit will become fixed, instead of remaining chaotic like it should.