MIT OpenCourseWare
http://ocw.mit.edu

18.085 Computational Science and Engineering I

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.085 Quiz 3 December 7, 2007 Professor Strang

Your PRINTED name is: \qquad 3

** NOTE AT NOON A BIG CHEMISTRY CLASS IS COMING !!!

1) (30 pts.) (a) Solve by a Fourier sine series $u(x)=\sum b_{k} \sin k x$:

$$
-u^{\prime \prime}+4 u(x)=f(x)=\left\{\begin{array}{rc}
1 & 0<x<\pi \\
-1 & -\pi<x<0
\end{array} \quad \text { with } u(-\pi)=u(\pi)=0 .\right.
$$

That right side $f(x)$ is the square wave $\mathrm{SW}(x)$ on page 318.
(b) What is the decay rate of the coefficients b_{k} ? What is the smoothness of $u(x)$ - which derivative jumps?
2) ($\mathbf{3 0} \mathbf{~ p t s}$.$) This problem is about the equation$

$$
\frac{1}{5} x_{n-1}+\frac{3}{5} x_{n}+\frac{1}{5} x_{n+1}=y_{n} \quad-\infty<n<\infty
$$

(a) Suppose the vector $x=\left(\ldots, x_{-1}, x_{0}, x_{1}, \ldots\right)$ is known. The equation is a non-cyclic convolution $a * x=y$. What is the infinite vector a ? Transform the equation into the frequency domain using $X(\omega)=\sum x_{n} e^{i n \omega}$ and $Y(\omega)$ and $A(\omega)$. What is $A(\omega)$ in this problem?
(b) Suppose the vector y is known but the vector x is not known. We want to find x. Take two steps:

1. Give a formula for $X(\omega)$ using known things like $Y(\omega)$ and $\frac{1}{5}, \frac{3}{5}, \frac{1}{5}$, or A.
2. Does your formula involve any division by zero or is it safe?

The last step in this deconvolution would recover the Fourier coefficients x_{n} from your function $X(\omega)$ but this is not on the exam!
3) (40 pts.) This circulant equation $C d=b$ is a cyclic convolution:

$$
C d=\left[\begin{array}{rrrr}
4 & -1 & -1 & -1 \\
-1 & 4 & -1 & -1 \\
-1 & -1 & 4 & -1 \\
-1 & -1 & -1 & 4
\end{array}\right]\left[\begin{array}{l}
d_{0} \\
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]=b \quad \text { is } \quad c \circledast d=b
$$

(a) The eigenvectors of that matrix C are the four columns $e_{0}, e_{1}, e_{2}, e_{3}$ of the Fourier matrix F (this F is on page 347). Multiply F times the e 's to find the four eigenvalues. Check that their sum is correct.
(b) Write the right side $b=(1,0,0,0)$ as a combination of those four eigenvectors (columns of F). Using the eigenvalues, the solution d is what combination of the four eigenvectors? Find the vector d.
(c) A direct way to solve $c \circledast d=b$ would be to take the 4 -point discrete transform of both sides. What are the transforms of b and c in this problem? What is the transform of the solution d ? Isn't this just the same method in different words (yes or no).

Thank you for taking 18.085!

