MIT OpenCourseWare
http://ocw.mit.edu

18.085 Computational Science and Engineering I

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.085 Quiz 3 December 8, 2006 Professor Strang

Your PRINTED name is:
 $\begin{array}{ll}\text { Grading } & 1 \\ & 2\end{array}$
 3

1) (30 pts .) (a) Suppose $f(x)$ is a periodic function:

$$
f(x)= \begin{cases}0 & \text { for }-\pi<x<0 \\ e^{-x} & \text { for } 0 \leq x \leq \pi \\ f(x+2 \pi n) & \text { for every integer } n\end{cases}
$$

Find the coefficients c_{k} in the complex Fourier series $f(x)=\sum c_{k} e^{i k x}$. What is c_{0} ? What is $\sum_{-\infty}^{\infty}\left|c_{k}\right|^{2}$?
(b) Draw a graph of $f(x)$ from -2π to 2π. Also draw a careful graph of $d f / d x$. How quickly do the coefficients of $f(x)$ decay as $k \rightarrow \infty$ and why?
(c) Find the Fourier coefficients d_{k} of $d f / d x$. Do they approach a constant (or what pattern do they approach) as $k \rightarrow \infty$? Explain the pattern from your graphs.
2) (33 pts.) (a) Can you complete this 4 -step MATLAB code to compute the cyclic convolution $f \circledast g=h$? I suggest fhat, ghat, hhat for their transforms.

1. fhat $=f f t(f)$
2.
3. hhat $=$
4. $\mathrm{h}=$
(It is equally possible to start with the inverse discrete transform ifft. The only difference will be a factor of N somewhere, which I forgive! If you don't know MATLAB notation for commands 2, 3, 4 you can use words. MATLAB's fft(f) and ifft(f) automatically determine the length of f.)
(b) Suppose each of your quiz grades is a random variable (don't know how I thought of this). The probability of grade j on each quiz $(j=0, \ldots, 100)$ is p_{j}. The "generating function" for that quiz is $P(z)=\sum p_{j} z^{j}$. What is the probability s_{k} that the sum of your grades on 2 quizzes is k ? Give a nice formula for $S(z)=\sum s_{k} z^{k}$.
(c) The chance of grade $j=(70,80,90,100)$ on one quiz is $p=(.3, .4, .2, .1)$. What is the expected value (mean m) for the grade on that quiz? Show that this quiz average m agrees with $d P / d z$ at $z=1$. What are the probabilities s_{k} for the sum of two grades? Give numbers or a MATLAB code for the s_{k}.
3) (37 pts.) (a) The hat function $H(x)=1-|x|$ for $-1 \leq x \leq 1$ has height 1 and area 1 and integral transform $\widehat{H}(k)=(2-2 \cos k) / k^{2}$. Find the transform $\widehat{R}(k)$ of the roof function $R(x)$:

$$
R(x)=\text { box }+ \text { hat }=2-|x| \quad \text { for }-1 \leq x \leq 1, \quad 0 \text { else. }
$$

(b) What is the value of $\widehat{R}(k)$ at $k=0$ and how does this connect to the graph of the roof?
(c) Suppose $R(x)$ is the response of a sensor to a point source $\delta(x)$ at $x=0$. The sensor is shift-invariant (shifted response when source is shifted). The output F from a distributed source $U(x)$ is the convolution $F=$ $R * U$. Describe how to find $U(x)$ if you know $F(x)$.
(d) There could be a difficulty with your solution method in part (c). That would arise if $\quad=0$. For 1 point, does this difficulty appear in this example?

