MIT OpenCourseWare
http://ocw.mit.edu

18.085 Computational Science and Engineering I

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

1) (30 pts.) (a) Solve this cyclic convolution equation for the vector d. (I would transform convolution to multiplication.) Notice that $c=(5,0,0,0)-$ ($1,1,1,1$). The equation is like deconvolution.

$$
c \circledast d=(4,-1,-1,-1) \circledast\left(d_{0}, d_{1}, d_{2}, d_{3}\right)=(1,0,0,0) .
$$

(b) Why is there no solution d if I change c to $C=(3,-1,-1,-1)$? Try it. Can you find a nonzcro D so that $C \circledast D=(0,0,0,0)$?
2) (36 pts.) (a) If $f(x)=e^{-x}$ for $0 \leq x \leq 2 \pi$, extended periodically, find its (complex) Fouricr cocfficients c_{k}.
(b) What is the decay rate of those c_{k} and how could you sec the decay rate from the function $f(x)$?
(c) Compute $\sum_{-\infty}^{\infty}\left|c_{k}\right|^{2}$ for those c 's as an ordinary number. [1 point question: How in the world could you find $\sum_{-\infty}^{\infty}\left|c_{k}\right|^{4}$? Don't try!]
(d) Solve this periodic differential equation to find $u(x)$:

$$
u^{\prime}(x)+u(x)=\delta(x)+\delta(x+2 \pi)+\delta(x-2 \pi)+\cdots \text { train of deltas }
$$

3) (34 pts.) Suppose $f(x)$ is a half-hat function $(-\infty<x<\infty)$.

$$
f(x)= \begin{cases}1-x & \text { for } 0 \leq x \leq 1 \\ 0 & \text { for all other } x\end{cases}
$$

(a) Draw a graph of $f(x)$ on the whole line $-\infty<x<\infty$ and ALSO a graph of its derivative $g(x)=d f / d x$.
(b) What is the transform (Fourier integral) $\widehat{g}(k)$ of $d f / d x$?
(c) What is the transform $\widehat{f}(k)$ of $f(x)$? Docs it have the decay rate you cxpect? What is $\widehat{f}(0)$?
(d) Christmas present: Is the convolution $f(x) * f(x)$ of the half-hat with itsclf cqual to the usual full hat $H(x)$? (Yes or no answer, 4 points).

THANK YOU FOR TAKING 18.085! 18.086 will be good small projects in scientific computing.

