MIT OpenCourseWare
http://ocw.mit.edu

18.085 Computational Science and Engineering I

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
\qquad Student Number \qquad Grading

1. (25 points)

(a) The 2π-periodic function $F(x)$ equals 1 for $0 \leq x<\pi$ and equals 0 for $\pi \leq x<2 \pi$. Find its Fourier coefficients c_{k} using complex exponentials:

$$
F(x)=\sum_{-\infty}^{\infty} c_{k} e^{i k x}
$$

Write out the terms for $k=-1,0,1$. What is the decay rate of the c_{k} as $k \rightarrow \infty$? How do you see this from the function $F(x)$?
(b) The energy equality connects $\int|F(x)|^{2} d x$ with $\sum\left|c_{k}\right|^{2}$. What is this equation for our particular $F(x)$? Find a formula for π.
(c) What is the derivative of this $F(x)$? Draw the graph of $d F / d x$!! What is the complex Fourier series for $d F / d x$? What is the decay rate of the coefficients? WHY?
2. (25 points) I am looking for the 7 th degree polynomial $p(z)=c_{0}+c_{1} z+\cdots+c_{7} z^{7}$ that has values $1,0,1,0,1,0,1,0$ at the 8 points $z=1, z=w, \ldots, z=w^{7}$. These points are the 8th roots of 1 with $w=e^{2 \pi i / 8}$ and $w^{2}=e^{2 \pi i / 4}=i$.
(a) We have 8 equations for the 8 's. The zeroth equation is $p(z)=1$ at $z=1$:

$$
c_{0}+c_{1}+\cdots+c_{7}=1
$$

What are the next two equations (at $z=w$ and $z=w^{2}$)? If you put all 8 equations in matrix form $A \boldsymbol{c}=\boldsymbol{b}$, describe the matrix A and the vector \boldsymbol{b}.
(b) By knowing the inverse matrix, you can solve those equations. Write down $\boldsymbol{c}=$ $A^{-1} \boldsymbol{b}$. What is that inverse matrix?
(c) Now multiply to find the 8 components of \boldsymbol{c}. What is the polynomial $p(z)$? Please check that it has the right values $1,0,1,0,1,0,1,0$ at $z=1, w, \cdots, w^{7}$.

3. (25 points)

(a) Find the Fourier integral transform $\widehat{f}(k)$ of this function $f(x)$:

$$
f(x)=0 \text { for } x<0, f(x)=e^{-a x} \text { for } x \geq 0
$$

(b) Take the Fourier transform of each term in the differential equation:

$$
\frac{d u}{d x}+a u(x)=\delta(x) \quad-\infty<x<\infty
$$

Now find $\widehat{u}(k)$. Now find $u(x)$.
(c) Check that your $u(x)$ does solve the differential equation at $x<0$ and $x=0$ and $x>0$. If the right side of the equation changes from $\delta(x)$ to $\delta(x-1)$, find the new solution $U(x)$:

$$
\frac{d U}{d x}+a U(x)=\delta(x-1)
$$

4. (25 points)

(a) These matrix-vector multiplications $C x$ and $C y$ are the cyclic convolution of which vectors?

$$
C x=\left[\begin{array}{rrrr}
5 & -1 & -1 & -1 \\
-1 & 5 & -1 & -1 \\
-1 & -1 & 5 & -1 \\
-1 & -1 & -1 & 5
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
2 \\
2 \\
2
\end{array}\right]
$$

and

$$
C y=\left[\begin{array}{rrrr}
5 & -1 & -1 & -1 \\
-1 & 5 & -1 & -1 \\
-1 & -1 & 5 & -1 \\
-1 & -1 & -1 & 5
\end{array}\right]\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{r}
6 \\
-6 \\
6 \\
-6
\end{array}\right]
$$

Take the Discrete Fourier Transform of all three vectors c, x, y. Call those transforms $\widehat{c}, \widehat{x}, \widehat{y}$.
(b) Convert those two cyclic convolutions $C x$ and $C y$ into component-by-component multiplications of the transforms. The answer uses numbers.
(c) Apparently this $y=(1,-1,1,-1)$ is an eigenvector with $\lambda=6$. Multiply any circulant matrix C times y to find the eigenvalue:

$$
C y=\left[\begin{array}{llll}
c_{0} & c_{3} & c_{2} & c_{1} \\
c_{1} & c_{0} & c_{3} & c_{2} \\
c_{2} & c_{1} & c_{0} & c_{3} \\
c_{3} & c_{2} & c_{1} & c_{0}
\end{array}\right]\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right]=\lambda y .
$$

How is λ connected to the transform \hat{c} of $c=\left(c_{0}, c_{1}, c_{2}, c_{3}\right)$?

