MIT OpenCourseWare
http://ocw.mit.edu

18.085 Computational Science and Engineering I

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

1) (40 pts.) This problem is based on a 5 -node graph.

I have not included edge numbers and arrows. Add them if you want to: not needed.
(a) Find $A^{\mathrm{T}} A$ for this graph. A is the incidence matrix.
(b) The sum of the eigenvalues of $A^{\mathrm{T}} A$ is \qquad . The product of those eigenvalues is \qquad .
(c) What is $A^{\mathrm{T}} A$ for a graph with only one edge? How can that small $A^{\mathrm{T}} A$ be used in constructing $A^{\mathrm{T}} A$ for a large graph?
(d) Suppose I want to solve $A u=\operatorname{ones}(8,1)=b$ by least squares. What equation gives a best \widehat{u} ? For the incidence matrix A, is there exactly one best \widehat{u} solving that equation? (If your equation has more than one best \widehat{u}, describe the difference between any two solutions.)
2) (30 pts.) (a) Suppose A is an m by n matrix of rank r (so it has r independent columns). How many independent solutions to $A u=0$ and $A^{\mathrm{T}} w=0$?
(b) Draw a full set of mechanisms (solutions to $e=A u=0$ with no stretching) for this truss with unit length bars and 45° angles.

(c) Suppose a mechanism has $u_{1}^{\mathrm{H}}=.01$. What are u_{1}^{V} and u_{3}^{H} and u_{3}^{V} ? What is the actual new length of the bar between joints 1 and 3 ?
3) (30 pts.) This problem is about the equation

$$
-u^{\prime \prime}(x)+u(x)=1 \quad \text { with } \quad u(0)=0 \text { and } u(1)=0
$$

(a) Multiply by a test function $v(x)$. Find the weak form of the equation, after an integration by parts.
(b) With $h=\Delta x=\frac{1}{3}$ draw the admissible piecewise linear trial functions $\phi_{1}(x), \ldots, \phi_{n}(x)$. What is n ? With test functions $=$ trial functions, give a formula for the entry K_{12} in the finite element equation $K U=F$.
(c) Find all the numbers in K and F.

