MIT OpenCourseWare
http://ocw.mit.edu

18.085 Computational Science and Engineering I

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
Your PRINTED name is \qquad Student Number \qquad

1. Start with the equation $-\frac{d}{d x}\left(c(x) \frac{d u}{d x}\right)=1$. The fixed-fixed boundary conditions are $u(0)=0=u(1)$. The function $c(x)$ jumps from 1 to 2 at $x=\frac{1}{2}$: $c(x)=1$ for $x \leq \frac{1}{2} \quad c(x)=2$ for $x>\frac{1}{2}$.
(a) Take $\triangle x=\frac{1}{4}$ and $u_{0}=u_{4}=0$. Create a difference equation $A^{T} C A u=f$ that models this problem. What are the shapes of A and C ? What are those matrices? Hint from review session: The FREE-FREE matrix is 4 by 5 .

$$
A_{0}=\left[\begin{array}{rrrrr}
-1 & 1 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & -1 & 1
\end{array}\right]
$$

Solution: The fixed-fixed matrix A removes the boundary columns 1 and 5 of the free-free matrix A_{0}. So A is 4 by 3 and C is 4 by 4:

$$
A=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1 \\
0 & 0 & -1
\end{array}\right] \quad C=\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 2 & \\
& & & 2
\end{array}\right]
$$

(b) Multiply $A^{T} C A$ to find K. Circle one of these properties. The matrix K is (positive definite) (only positive semidefinite) (indefinite) Prove your statement from the numbers in K OR from its form $K=A^{T} C A$. Tell me which test for positive definiteness/semidefiniteness you are using.
Solution: The stiffness matrix $A^{T} C A$ will be 3 by 3 . It multiplies $u=\left(u_{1}, u_{2}, u_{3}\right)$.

$$
K=A^{T} C A=\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 3 & -2 \\
0 & -2 & 4
\end{array}\right] .
$$

This is positive definite. All tests are passed. Upper left determinants are 2, then 5, then 12. Pivots are 2, then $5 / 2$, then $12 / 5$. Eigenvalues must be positive too. Energy $u^{T} A^{T} C A u=(A u)^{T} C(A u)=c_{1} e_{1}^{2}+c_{2} e_{2}^{2}+c_{3} e_{3}^{2}+c_{4} e_{4}^{2}>0$.
2. (Two oscillating masses with fixed-free ends)
(a) Set up the matrix equations $M \frac{d^{2} u}{d t^{2}}+K u=0$ for this problem using masses m_{1}, m_{2} and spring constants c_{1}, c_{2}. Find M and K.
Solution: The matrices are

$$
M=\left[\begin{array}{cc}
m_{1} & \\
& m_{2}
\end{array}\right] \quad K=A^{T} C A=\left[\begin{array}{cc}
c_{1}+c_{2} & -c_{2} \\
-c_{2} & c_{2}
\end{array}\right]
$$

(b) What matrix eigenvalue problem for eigenvalues λ_{1}, λ_{2} would you solve to find 2 $u(t)$? What would be the form of $u(t)$ using the λ 's and x 's, with constants still to be determined by the initial conditions? NOT NECESSARY TO COMPUTE λ 's and x 's.
Solution: Solve $K x=\lambda M x$ to find the eigenvalues λ_{1}, λ_{2} and eigenvectors x_{1}, x_{2} of $M^{-1} K$.
Frequencies $\omega_{1}=\sqrt{\lambda_{1}}$ and $\omega_{2}=\sqrt{\lambda_{2}}$.
$u(t)=A\left(\cos \omega_{1} t\right) x_{1}+B\left(\sin \omega_{1} t\right) x_{1}+C\left(\cos \omega_{2} t\right) x_{2}+D\left(\sin \omega_{2} t\right) x_{2}$.
3. Suppose we measure $b=1,3,3$ at times $t=0,1,2$. Those three points do not lie on a line $b=C+D t$.
(a) Find the best C and D in the least-squares sense, to give the minimum error $E=e_{1}^{2}+e_{2}^{2}+e_{3}^{2}$. (The number e_{3} is the error $C+2 D-3$ at the third time $t=2$.) SET UP THE MATRIX A AND THE LEAST SQUARES EQUATION AND SOLVE FOR C AND D.
Solution: The unsolvable equations $A u=b$ are

$$
\begin{aligned}
& C+0 \cdot D=1 \\
& C+1 \cdot D=3 \\
& C+2 \cdot D=3
\end{aligned} \quad \text { or } \quad\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
C \\
D
\end{array}\right]=\left[\begin{array}{l}
1 \\
3 \\
3
\end{array}\right]
$$

The least squares equation $A^{T} A \hat{u}=A^{T} b$ is

$$
\left[\begin{array}{ll}
3 & 3 \\
3 & 5
\end{array}\right]\left[\begin{array}{l}
C \\
D
\end{array}\right]=\left[\begin{array}{l}
7 \\
9
\end{array}\right] \quad \text { and } \quad \hat{u}=\left[\begin{array}{c}
C \\
D
\end{array}\right]=\left[\begin{array}{c}
4 / 3 \\
1
\end{array}\right] .
$$

Best line is $4 / 3+t$.
(b) Geometrically, the vector $b=(1,3,3)$ is being projected onto some 2-dimensional plane. FIND THE PROJECTION $p=\left(p_{1}, p_{2}, p_{3}\right)$ AND THE ERROR $e=$ $\left(e_{1}, e_{2}, e_{3}\right)$. If the measurements b had been the same as p, then the best line would have \qquad (Complete a suitable sentence).
Solution: The projection of b is

$$
\begin{gathered}
p=A \hat{u}=\left[\begin{array}{c}
4 / 3 \\
7 / 3 \\
10 / 3
\end{array}\right] . \\
e=b-p=\left[\begin{array}{r}
-1 / 3 \\
2 / 3 \\
-1 / 3
\end{array}\right] .
\end{gathered}
$$

The error is
[The problem statement allows $-e$ as a correct answer]
If $b=p$, then the best line would have -
"gone through the points",
"been the same line $4 / 3+t$ ",
"..."
4. (a) What shape is the incidence matrix A for this graph?

How many independent columns in the matrix A ?
Why is $A^{T} A$ not invertible? Write two properties of $A^{T} A$. NOT NECESSARY TO WRITE ANY MATRICES.
Solution: 8 edges, 5 nodes. The incidence matrix A is 8 by 5 . It has only 4 independent columns.

$A^{T} A$ is not invertible because $u=(1,1,1,1,1)$ solves $A u=0$ and then $A^{T} A u=0$.
(b) I want to find the drop in the slope $\frac{d u}{d x}$ at $x=\frac{1}{2}$, when

$$
-\frac{d}{d x}\left(e^{x} \frac{d u}{d x}\right)=\delta\left(x-\frac{1}{2}\right) \text { with } u(0)=0 \text { and } u^{\prime}(1)=0 .
$$

Step 1 Solve $-\frac{d w}{d x}=\delta\left(x-\frac{1}{2}\right)$ with $w(1)=0$ to see the drop in $\mathrm{w}(\mathrm{x})$.
Step 2 Since $w(x)=e^{x} d u / d x$, what is the drop in $d u / d x$ at $x=\frac{1}{2}$? Not necessary to find $u(x)$.
Solution: The solution to $-d w / d x=\delta(x-a)$ with $w(1)=0$ is $w(x)=[1$ for $x \leq$ a, then 0 for $x>a$].
If $e^{x} d u / d x=w(x)$, then the drop in $d u / d x$ will be e^{-a}.
This problem has $a=\frac{1}{2}$, so the drop is $1 / \sqrt{e}$.
[Not difficult to solve for $u(x)$ in this fixed-free case!]

