18.085 Computational Science and Engineering I Fall 2008

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

Your PRINTED name is	Student Number	Grading
menuppers for readementation of the approximate and a		1
		2
		3
		4

- 1. Start with the equation $-\frac{d}{dx}(c(x)\frac{du}{dx}) = 1$. The fixed-fixed boundary conditions are u(0) = 0 = u(1). The function c(x) jumps from 1 to 2 at $x = \frac{1}{2}$: c(x) = 1 for $x \leq \frac{1}{2}$ c(x) = 2 for $x > \frac{1}{2}$.
 - (a) Take $\Delta x = \frac{1}{4}$ and $u_0 = u_4 = 0$. Create a difference equation $A^T C A u = f$ that models this problem. What are the shapes of A and C? What are those matrices? Hint from review session: The FREE-FREE matrix is 4 by 5.

	Γ-1	1	. 0	0	ך 0	
$A_0 = $	0	-1	1	0	0	
	0	0	-1	1	0	
	0	0	0	-1	1]	

Solution: The fixed-fixed matrix A removes the boundary columns 1 and 5 of the free-free matrix A_0 . So A is 4 by 3 and C is 4 by 4:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & & \\ & 1 & \\ & & 2 \\ & & & 2 \end{bmatrix}$$

(b) Multiply A^TCA to find K. Circle one of these properties. The matrix K is (positive definite) (only positive semidefinite) (indefinite) Prove your statement from the numbers in K OR from its form $K = A^TCA$. Tell me which test for positive definiteness/semidefiniteness you are using. Solution: The stiffness matrix A^TCA will be 3 by 3. It multiplies $u = (u_1, u_2, u_3)$.

$$K = A^T C A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 3 & -2 \\ 0 & -2 & 4 \end{bmatrix}.$$

This is positive definite. All tests are passed. Upper left determinants are 2, then 5, then 12. Pivots are 2, then 5/2, then 12/5. Eigenvalues must be positive too. Energy $u^T A^T C A u = (A u)^T C (A u) = c_1 e_1^2 + c_2 e_2^2 + c_3 e_3^2 + c_4 e_4^2 > 0$.

- 2. (Two oscillating masses with fixed-free ends)
 - (a) Set up the matrix equations $M \frac{d^2u}{dt^2} + Ku = 0$ for this problem using masses m_1, m_2 and spring constants c_1, c_2 . Find M and K.

Solution: The matrices are

$$M = \begin{bmatrix} m_1 \\ m_2 \end{bmatrix} \qquad K = A^T C A = \begin{bmatrix} c_1 + c_2 & -c_2 \\ -c_2 & c_2 \end{bmatrix}$$

(b) What matrix eigenvalue problem for eigenvalues λ_1, λ_2 would you solve to find u(t)? What would be the form of u(t) using the λ 's and x's, with constants still to be determined by the initial conditions? NOT NECESSARY TO COMPUTE λ 's and x's.

Solution: Solve $Kx = \lambda Mx$ to find the eigenvalues λ_1, λ_2 and eigenvectors x_1, x_2 of $M^{-1}K$.

Frequencies $\omega_1 = \sqrt{\lambda_1}$ and $\omega_2 = \sqrt{\lambda_2}$. $u(t) = A(\cos \omega_1 t)x_1 + B(\sin \omega_1 t)x_1 + C(\cos \omega_2 t)x_2 + D(\sin \omega_2 t)x_2$.

60

- 3. Suppose we measure b = 1, 3, 3 at times t = 0, 1, 2. Those three points do not lie on a line b = C + Dt.
 - (a) Find the best C and D in the least-squares sense, to give the minimum error $E = e_1^2 + e_2^2 + e_3^2$. (The number e_3 is the error C + 2D 3 at the third time t = 2.) SET UP THE MATRIX A AND THE LEAST SQUARES EQUATION AND SOLVE FOR C AND D.

Solution: The unsolvable equations Au = b are

$C + 0 \cdot D = 1$		$\begin{bmatrix} 1 \end{bmatrix}$	0]	[a]	$\begin{bmatrix} 1 \end{bmatrix}$	
$C + 1 \cdot D = 3$	or	1	1		3	
$C + 2 \cdot D = 3$		[1	2		3	

The least squares equation $A^T A \hat{u} = A^T b$ is

$$\begin{bmatrix} 3 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 7 \\ 9 \end{bmatrix} \quad \text{and} \quad \hat{u} = \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 4/3 \\ 1 \end{bmatrix}.$$

Best line is 4/3 + t.

(b) Geometrically, the vector b = (1, 3, 3) is being projected onto some 2-dimensional plane. FIND THE PROJECTION $p = (p_1, p_2, p_3)$ AND THE ERROR $e = (e_1, e_2, e_3)$. If the measurements b had been the same as p, then the best line would have ______ (Complete a suitable sentence).

Solution: The projection of b is

$$p = A\hat{u} = \begin{bmatrix} 4/3\\7/3\\10/3 \end{bmatrix}.$$

The error is

$$e = b - p = \begin{bmatrix} -1/3 \\ 2/3 \\ -1/3 \end{bmatrix}.$$

[The problem statement allows -e as a correct answer] If b = p, then the best line would have – "gone through the points",

"been the same line 4/3 + t",

4. (a) What shape is the incidence matrix A for this graph? How many independent columns in the matrix A? Why is $A^T A$ not invertible? Write two properties of $A^T A$. NOT NECESSARY TO WRITE ANY MATRICES.

Solution: 8 edges, 5 nodes. The incidence matrix A is 8 by 5. It has only 4 independent columns.

 $A^{T}A$ is not invertible because u = (1, 1, 1, 1, 1) solves Au = 0 and then $A^{T}Au = 0$.

(b) I want to find the drop in the slope $\frac{du}{dx}$ at $x = \frac{1}{2}$, when

$$-\frac{d}{dx}\left(e^x\frac{du}{dx}\right) = \delta\left(x - \frac{1}{2}\right) \text{ with } u(0) = 0 \text{ and } u'(1) = 0.$$

Step 1 Solve $-\frac{dw}{dx} = \delta(x - \frac{1}{2})$ with w(1) = 0 to see the drop in w(x). Step 2 Since $w(x) = e^x du/dx$, what is the drop in du/dx at $x = \frac{1}{2}$? Not necessary to find u(x).

Solution: The solution to $-dw/dx = \delta(x-a)$ with w(1) = 0 is $w(x) = [1 \text{ for } x \le a, \text{ then } 0 \text{ for } x > a].$

If $e^{x}du/dx = w(x)$, then the drop in du/dx will be e^{-a} .

This problem has $a = \frac{1}{2}$, so the drop is $1/\sqrt{e}$.

[Not difficult to solve for u(x) in this fixed-free case!]