MIT OpenCourseWare
http://ocw.mit.edu

18.085 Computational Science and Engineering I

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
18.085 Quiz $1 \quad$ October 5, $2007 \quad$ Professor Strang

Your PRINTED name is: SOLUTIONS \quad Grading 1

 31) (39 pts.) With $h=\frac{1}{3}$ there are 4 meshpoints $0, \frac{1}{3}, \frac{2}{3}, 1$ and displacements $u_{0}, u_{1}, u_{2}, u_{3}$.
a) Write down the matrices A_{0}, A_{1}, A_{2} with three rows that produce the first differences $u_{i}-u_{i-1}$:
A_{0} has 0 boundary conditions on u
A_{1} has 1 boundary condition $u_{0}=0$ (left end fixed)
A_{2} has 2 boundary conditions $u_{0}=u_{3}=0$.
b) Write down all three matrices $A_{0}^{\mathrm{T}} A_{0}, A_{1}^{\mathrm{T}} A_{1}, A_{2}^{\mathrm{T}} A_{2}$.

CROSS OUT IF FALSE / GIVE REASON BASED ON COLUMNS OF A !
$K_{0}=A_{0}^{\mathrm{T}} A_{0}$ is (singular) (invertible) (positive definite) Reason:
$K_{1}=A_{1}^{\mathrm{T}} A_{1}$ is (singular) (invertible) (positive definite) Reason:
c) Find all solutions $w=\left(w_{1}, w_{2}, w_{3}\right)$ to each of these equations:

$$
A_{0}^{\mathrm{T}} w=0 \quad A_{1}^{\mathrm{T}} w=0 \quad A_{2}^{\mathrm{T}} w=0
$$

Solution.
a)

$$
A_{0}=\left[\begin{array}{rrrr}
-1 & 1 & & \\
& -1 & 1 & \\
& & -1 & 1
\end{array}\right] \quad A_{1}=\left[\begin{array}{rrr}
1 & & \\
-1 & 1 & \\
& -1 & 1
\end{array}\right] \quad A_{2}=\left[\begin{array}{rr}
1 & 0 \\
-1 & 1 \\
0 & -1
\end{array}\right]
$$

b)

$$
\begin{aligned}
A_{0}^{\mathrm{T}} A_{0}= & {\left[\begin{array}{rrrr}
1 & -1 & & \\
-1 & 2 & -1 & \\
& -1 & 2 & -1 \\
& & -1 & 1
\end{array}\right] } \\
& \begin{array}{c}
\\
\\
\end{array} \\
& \begin{array}{rrr}
{\left[\begin{array}{rrr}
2 & -1 & \\
-1 & 2 & -1 \\
& -1 & 1
\end{array}\right] \quad A_{2}^{\mathrm{T}} A_{2}=\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right]} \\
& \text { (invertible) (positive definite) }
\end{array}
\end{aligned}
$$

c)

$$
\begin{aligned}
& A_{0}^{\mathrm{T}} w=\left[\begin{array}{rrr}
-1 & & \\
1 & -1 & \\
& & 1
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right] \quad \longrightarrow \quad w=0 \\
& A_{1}^{\mathrm{T}} w=0 \quad \longrightarrow \quad w=0 \\
& A_{2}^{\mathrm{T}} w=\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \longrightarrow \quad w=c\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
\end{aligned}
$$

2) (33 pts.) a) Find the eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and unit eigenvectors y_{1}, y_{2}, y_{3} of B. Hint: one eigenvector is $(1,0,-1) / \sqrt{2}$.

$$
B=\left[\begin{array}{rrr}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

b) Factor B into $Q \Lambda Q^{\mathrm{T}}$ with $Q^{-1}=Q^{\mathrm{T}}$. Draw a graph of the energy function $f\left(u_{1}, u_{2}, u_{3}\right)=\frac{1}{2} u^{\mathrm{T}} B u$. This is a surface in 4-dimensional u_{1}, u_{2}, u_{3}, f space so your graph may not be perfect-OK to describe it in 1 sentence.
c) What differential equation with what boundary conditions on $y(x)$ at $x=0$ and 1 is the continuous analog of $B y=\lambda y$? What are the eigenfunctions $y(x)$ and eigenvalues λ in this differential equation? At which x 's would you sample the first three eigenfunctions to get the three eigenvectors in part (a)?

Solution.
a) $y_{1}=\frac{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]}{\sqrt{3}}$ has $B y_{1}=0 \quad$ so $\quad \lambda_{1}=0 \quad$ (check: trace $=4$)
given vector $y_{2}=\frac{\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]}{\sqrt{2}}$ has $B y_{2}=y_{2} \quad$ so $\quad \lambda_{2}=1$
y_{3} is orthogonal to $y_{1}, y_{2} \quad y_{3}=\frac{\left[\begin{array}{r}1 \\ -2 \\ 1\end{array}\right]}{\sqrt{6}}$ with $\lambda_{3}=3$
b) The orthonormal eigenvectors are the columns of Q (orthonormal gives $Q^{\mathrm{T}} Q=I$).

Then $B=Q \Lambda Q^{\mathrm{T}}$ with $Q=\left[\begin{array}{rrr}1 & 1 & 1 \\ 1 & 0 & -2 \\ 1 & -1 & 1\end{array}\right] \quad \Lambda=\left[\begin{array}{ll}0 & \\ & \\ & 1 \\ & \\ & \\ & \\ & \\ & \\ \sqrt{2} & \frac{\sqrt{6}}{}\end{array}\right]$
The graph of $f=\frac{1}{2} u^{\mathrm{T}} B u$ has a valley along the line of eigenvectors $u=(c, c, c)$. The surface goes up the orthogonal directions.

c) B is free-free so the equation is $-y^{\prime \prime}=\lambda y$ with $y^{\prime}=0$ at $x=0,1$.

$$
y_{k}=\cos k \pi x, \quad k=0,1,2, \ldots
$$

Sample at the points $x=\left(\frac{1}{6}, \frac{3}{6}, \frac{5}{6}\right)$ to get (a multiple of) the discrete eigenvectors y_{1}, y_{2}, y_{3}.
3) (28 pts.) The fixed-fixed figure shows $n=2$ masses and $m=4$ springs. Displacements u_{1}, u_{2}.

a) Write down the stretching-displacement matrix A in $e=A u$.
b) What is the stiffness matrix $K=A^{\mathrm{T}} C A$ for this system?
c) Theory question about any $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{C A} . \quad C$ is symmetric positive definite. What condition on A assures that $u^{\mathrm{T}} A^{\mathrm{T}} C A u>0$ for every vector $u \neq 0$? Explain why this is greater than zero and where you use your condition on A.

Solution.
a)

$$
\left[\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3} \\
e_{4}
\end{array}\right]=\left[\begin{array}{rr}
1 & 0 \\
-1 & 1 \\
0 & 1 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=A u
$$

b)

$$
A^{\mathrm{T}} C A=\left[\begin{array}{rrrr}
1 & -1 & 0 & 0 \\
0 & 1 & 1 & -1
\end{array}\right]\left[\begin{array}{llll}
c_{1} & & & \\
& c_{2} & & \\
& & c_{3} & \\
& & & c_{4}
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
-1 & 1 \\
0 & 1 \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
c_{1}+c_{2} & -c_{2} \\
-c_{2} & c_{2}+c_{3}+c_{4}
\end{array}\right]
$$

c) Write $u^{\mathrm{T}} A^{\mathrm{T}} C A u=(A u)^{\mathrm{T}} C(A u)=e^{\mathrm{T}} C e$

Since C is positive definite, this is positive unless $e=0$.
Condition on A : Independent columns.
Then $e=A u$ is zero only if $u=0$.
So $A^{\mathrm{T}} C A$ is positive definite.

