MIT OpenCourseWare
http://ocw.mit.edu

18.085 Computational Science and Engineering I

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.085 Quiz $1 \quad$ October 5, 2007
 Professor Strang

Your PRINTED name is: \qquad

Grading 1

1) (39 pts.) With $h=\frac{1}{3}$ there are 4 meshpoints $0, \frac{1}{3}, \frac{2}{3}, 1$ and displacements $u_{0}, u_{1}, u_{2}, u_{3}$.
a) Write down the matrices A_{0}, A_{1}, A_{2} with three rows that produce the first differences $u_{i}-u_{i-1}$:
A_{0} has 0 boundary conditions on u
A_{1} has 1 boundary condition $u_{0}=0$ (left end fixed)
A_{2} has 2 boundary conditions $u_{0}=u_{3}=0$.
b) Write down all three matrices $A_{0}^{\mathrm{T}} A_{0}, A_{1}^{\mathrm{T}} A_{1}, A_{2}^{\mathrm{T}} A_{2}$. CROSS OUT IF FALSE / GIVE REASON BASED ON COLUMNS OF A !
$K_{0}=A_{0}^{\mathrm{T}} A_{0}$ is (singular) (invertible) (positive definite) Reason:
$K_{1}=A_{1}^{\mathrm{T}} A_{1}$ is (singular) (invertible) (positive definite) Reason:
c) Find all solutions $w=\left(w_{1}, w_{2}, w_{3}\right)$ to each of these equations:

$$
A_{0}^{\mathrm{T}} w=0 \quad A_{1}^{\mathrm{T}} w=0 \quad A_{2}^{\mathrm{T}} w=0
$$

2) (33 pts.) a) Find the eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and unit eigenvectors y_{1}, y_{2}, y_{3} of B. Hint: one eigenvector is $(1,0,-1) / \sqrt{2}$.

$$
B=\left[\begin{array}{rrr}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

b) Factor B into $Q \Lambda Q^{\mathrm{T}}$ with $Q^{-1}=Q^{\mathrm{T}}$. Draw a graph of the energy function $f\left(u_{1}, u_{2}, u_{3}\right)=\frac{1}{2} u^{\mathrm{T}} B u$. This is a surface in 4-dimensional u_{1}, u_{2}, u_{3}, f space so your graph may not be perfect-OK to describe it in 1 sentence.
c) What differential equation with what boundary conditions on $y(x)$ at $x=0$ and 1 is the continuous analog of $B y=\lambda y$? What are the eigenfunctions $y(x)$ and eigenvalues λ in this differential equation? At which x 's would you sample the first three eigenfunctions to get the three eigenvectors in part (a)?
3) (28 pts.) The fixed-fixed figure shows $n=2$ masses and $m=4$ springs. Displacements u_{1}, u_{2}.

a) Write down the stretching-displacement matrix A in $e=A u$.
b) What is the stiffness matrix $K=A^{\mathrm{T}} C A$ for this system?
c) Theory question about any $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{C A} . \quad C$ is symmetric positive definite. What condition on A assures that $u^{\mathrm{T}} A^{\mathrm{T}} C A u>0$ for every vector $u \neq 0$? Explain why this is greater than zero and where you use your condition on A.

