MIT OpenCourseWare
http://ocw.mit.edu

18.085 Computational Science and Engineering I

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.085 Quiz 1 October 2, 2006 Professor Strang

Your PRINTED name is:

Grading 1

 31) (36 pts.) (a) Suppose $u(x)$ is linear on each side of $x=0$, with slopes $u^{\prime}(x)=A$ on the left and $u^{\prime}(x)=B$ on the right:

$$
u(x)= \begin{cases}A x & \text { for } x \leq 0 \\ B x & \text { for } x \geq 0\end{cases}
$$

What is the second derivative $u^{\prime \prime}(x)$? Give the answer at every x.
(b) Take discrete values U_{n} at all the whole numbers $x=n$:

$$
U_{n}= \begin{cases}A n & \text { for } n \leq 0 \\ B n & \text { for } n \geq 0\end{cases}
$$

For each n, what is the second difference $\Delta^{2} U_{n}$? Using coefficients $1,-2,1$ (notice signs!) give the answer $\Delta^{2} U_{n}$ at every n.
(c) Solve the differential equation $-u^{\prime \prime}(x)=\delta(x)$ from $x=-2$ to $x=3$ with boundary values $u(-2)=0$ and $u(3)=0$.
(d) Approximate problem (c) by a difference equation with $h=\Delta x=1$. What is the matrix in the equation $K U=F$? What is the solution U ?
2) (24 pts.) A symmetric matrix K is "positive definite" if $u^{\mathrm{T}} K u>0$ for every nonzero vector u.
(a) Suppose K is positive definite and u is a (nonzero) eigenvector, so $K u=\lambda u$. From the definition above show that $\lambda>0$. What solution $u(t)$ to $\frac{d u}{d t}=K u$ comes from knowing this eigenvector and eigenvalue?
(b) Our second-difference matrix K_{4} has the form $A^{\mathrm{T}} A$:

$$
K_{4}=\left[\begin{array}{rrrrr}
1 & -1 & & & \\
& 1 & -1 & & \\
& & 1 & -1 & \\
& & & 1 & -1
\end{array}\right]\left[\begin{array}{rrrr}
1 & & & \\
-1 & 1 & & \\
& -1 & 1 & \\
& & -1 & 1 \\
& & & -1
\end{array}\right]=\left[\begin{array}{rrrr}
2 & -1 & & \\
-1 & 2 & -1 & \\
& -1 & 2 & -1 \\
& & -1 & 2
\end{array}\right]
$$

Convince me how $K_{4}=A^{\mathrm{T}} A$ proves that $u^{\mathrm{T}} K_{4} u=u^{\mathrm{T}} A^{\mathrm{T}} A u>0$ for every nonzero vector u. (Show me why $u^{\mathrm{T}} A^{\mathrm{T}} A u \geq 0$ and why >0.)
(c) This matrix is positive definite for which b ? Semidefinite for which b ? What are its pivots??

$$
S=\left[\begin{array}{ll}
2 & b \\
b & 4
\end{array}\right]
$$

3) (40 pts.) (a) Suppose I measure (with possible error) $u_{1}=b_{1}$ and $u_{2}-u_{1}=b_{2}$ and $u_{3}-u_{2}=b_{3}$ and finally $u_{3}=b_{4}$. What matrix equation would I solve to find the best least squares estimate $\widehat{u}_{1}, \widehat{u}_{2}, \widehat{u}_{3}$? Tell me the matrix and the right side in $K \widehat{u}=f$.

(b) What 3 by 2 matrix A gives the spring stretching $e=A u$ from the displacements u_{1}, u_{2} of the masses?
(c) Find the stiffness matrix $K=A^{\mathrm{T}} C A$. Assuming positive c_{1}, c_{2}, c_{3} show that K is invertible and positive definite.
