MIT OpenCourseWare
http://ocw.mit.edu

18.085 Computational Science and Engineering I

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

1) (30 pts.) (a) Solve this cyclic convolution equation for the vector d. (I would transform convolution to multiplication.) Notice that $c=(5,0,0,0)-$ ($1,1,1,1$). The equation is like deconvolution.

$$
c \circledast d=(4,-1,-1,-1) \circledast\left(d_{0}, d_{1}, d_{2}, d_{3}\right)=(1,0,0,0) .
$$

(b) Why is there no solution d if I change c to $C=(3,-1,-1,-1)$? Try it. Can you find a nonzcro D so that $C \circledast D=(0,0,0,0)$?

Solution.

(a) Here $n=4$. The transform $F c$ is $5(1,1,1,1)-(4,0,0,0)=(1,5,5,5)$. The right side has transform (1,1,1,1). Multiplication (or division!) gives (1,.2,.2,.2) $=.8(1,0,0,0)+$ $.2(1,1,1,1)$ which comes from $.8\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)+.2(1,0,0,0)=(.4, .2, .2, .2)=d$.
(b) The transform $F C$ is $4(1,1,1,1)-(4,0,0,0)=(0,4,4,4)$. We can't divide by zero ! The vector $D=(1,1,1,1)$ solves $C * D=(0,0,0,0)$.

Note for the future. Express the same problem with circulant matrices:
(a) $\left[\begin{array}{rrrr}4 & -1 & -1 & -1 \\ -1 & 4 & -1 & -1 \\ -1 & -1 & 4 & -1 \\ -1 & -1 & -1 & 4\end{array}\right]\left[\begin{array}{rrrr}.4 & .2 & .2 & .2 \\ .2 & .4 & .2 & .2 \\ .2 & .2 & .4 & .2 \\ .2 & .2 & .2 & .4\end{array}\right]=I$
(b) No solution when the matrix is singular a zero cigenvalue! (The eigenvalues are the discrete transforms!!)

$$
\left[\begin{array}{rrrr}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 3 & -1 \\
-1 & -1 & -1 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

2) (36 pts.) (a) If $f(x)=e^{-x}$ for $0 \leq x \leq 2 \pi$, cxtended periodically, find its (complex) Fouricr cocfficients c_{k}.
(b) What is the decay rate of those c_{k} and how could you see the decay rate from the function $f(x)$?
(c) Compute $\sum_{-\infty}^{\infty}\left|c_{k}\right|^{2}$ for those c 's as an ordinary number. 11 point question: How in the world could you find $\sum_{-\infty}^{\infty}\left|c_{k}\right|^{4}$? Don't try!]
(d) Solve this periodic differential cquation to find $u(x)$:

$$
u^{\prime}(x)+u(x)=\delta(x)+\text { periodic train of deltas }
$$

Solution.

(a) $c_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-x} e^{-i k x} d x=\left.\frac{e^{-(1+i k) x}}{-2 \pi(1+i k)}\right|_{0} ^{2 \pi}=\frac{1-e^{-(1+i k) 2 \pi}}{2 \pi(1+i k)}=\frac{1-e^{-2 \pi}}{2 \pi(1+i k)}$
(b) Decay rate $\frac{1}{k}$ because $f(x)$ jumps from $e^{-2 \pi}$ to 1 at the end of cvery 2π period.
(c) $\sum_{-\infty}^{\infty}\left|c_{k}\right|^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x)|^{2} d x=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-2 x} d x=\frac{1-e^{-4 \pi}}{4 \pi}$

To find $\sum\left|c_{k}\right|^{4}$ we want the function $F(x)$ whose Fouricr cocfficients are c_{k}^{2}. By the convolution rulc $F(x) \approx f * f$ (which is painfully computable since e^{-x} is casy to integrate).
(d) $(i k+1) c_{k}=\frac{1}{2 \pi}$ so $c_{k}=\frac{1}{2 \pi(1+i k)}$, which agrecs with part (a) after dividing by the constant: $u(x)=\frac{f(x)}{1-e^{-2 \pi}}=\sum \frac{e^{i k x}}{2 \pi(1+i k)}$.
3) (34 pts.) Suppose $f(x)$ is a half-hat function $(-\infty<x<\infty)$.

$$
f(x)= \begin{cases}1-x & \text { for } 0 \leq x \leq 1 \\ 0 & \text { for all other } x\end{cases}
$$

(a) Draw a graph of $f(x)$ on the whole line $-\infty<x<\infty$ and ALSO a graph of its derivative $g(x)=d f / d x$.
(b) What is the transform (Fouricr intcgral) $\widehat{g}(k)$ of $d f / d x$?
(c) What is the transform $\widehat{f}(k)$ of $f(x)$? Docs it have the decay rate you cxpect? What is $\hat{f}(0)$?
(d) Christmas present: Is the convolution $f(x) * f(x)$ of the half-hat with itsclf cqual to the usual full hat $H(x)$? (Yes or no answer, 4 points).

THANK YOU FOR TAKING 18.085! 18.086 will be good small projects in scientific computing.

Solution.

(a) $g(x)=\delta(x)$ - unit square wave on $[0,1]$
(b) $\widehat{g}(x)=1-\frac{1-e^{-i k}}{i k}=\frac{i k-1+e^{-i k}}{\left(i k^{2}\right)}$
(c) $\widehat{f}(k)=\frac{\widehat{g}(k)}{i k}=\frac{i k-1+e^{-i k}}{(i k)^{2}}=\frac{i k-1+\left(1-i k-k^{2} / 2 \cdots\right)}{(i k)^{2}}$

$$
=\left(\frac{1}{2} \text { at } k=0\right)=\text { area undcr } f(x)!
$$

Decay rate $\frac{1}{k}$ because $f(x)$ has a step at $x=0$.
(d) No way.

