MIT OpenCourseWare
http://ocw.mit.edu

18.085 Computational Science and Engineering I

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Your name is:

 Grading 12
3

Total

Thank you for taking 18.085, I hope you enjoyed it.

1) (35 pts.) Suppose the 2π-periodic $f(x)$ is a half-length square wave:

$$
f(x)=\left\{\begin{aligned}
1 & \text { for } 0<x<\pi / 2 \\
-1 & \text { for }-\pi / 2<x<0 \\
0 & \text { elsewhere in }[-\pi, \pi]
\end{aligned}\right.
$$

(a) Find the Fourier cosine and sine coefficients a_{k} and b_{k} of $f(x)$.
(b) Compute $\int_{-\pi}^{\pi}(f(x))^{2} d x$ as a number and also as an infinite series using the a_{k}^{2} and b_{k}^{2}.
(c) DRAW A GRAPH of its integral $I(x)$. (Then $d I / d x=f(x)$ on the interval $[-\pi, \pi]$ choose the integration constant so $I(0)=0$.) What are the Fourier coefficients A_{k} and B_{k} of $I(x)$?
(d) DRAW A GRAPH of the derivative $D(x)=\frac{d f}{d x}$ from $-\pi$ to π. What are the Fourier coefficients of $D(x)$?
(e) If you convolve $D(x) * I(x)$ why do you get the same answer as $f(x) *$ $f(x)$? Not required to find that answer, just explain $D * I=f * f$.
(a)

$$
f(x)=\text { odd function }=-f(-x) \text { so all } a_{k}=0
$$

Half-interval: $\quad b_{k}=\frac{2}{\pi} \int_{0}^{\pi / 2} \sin k x d x=\frac{2}{\pi} \frac{1-\cos (k \pi / 2)}{k}$.
(b) $\int_{-\pi}^{\pi}(f(x))^{2} d x=\int_{-\pi / 2}^{\pi / 2}=\pi$. By Parseval this equals $\pi \sum b_{k}^{2}$. (Substituting $b_{k}=$ $\frac{2}{\pi}\left(\frac{1}{1}, \frac{2}{2}, \frac{1}{3}, \frac{0}{4}, \ldots\right)$ will give a remarkable formula from $\sum b_{k}^{2}=1$.)
(c)

Even function so $B_{k}=0$.
Integrating $b_{k} \sin k x$ gives $-b_{k} \frac{\cos k x}{k}$ so $A_{k}=\frac{-b_{k}}{k}$.

The constant term is $A_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} I(x) d x=\frac{3 \pi}{8}$ or $-\frac{\pi}{8}$ (integrate starting at 0 or $-\pi$).
(d)

(e) Convolution in x-space is multiplication in k-space. So $f * f$ has complex Fourier coefficients c_{k}^{2} (with factor 2π). And $D(x) * I(x)$ has Fourier coefficients $\left(i k c_{k}\right)\left(c_{k} / i k\right)=$ c_{k}^{2} (with same factor). $D * I=f * f!$! Check in x-space:

$$
\begin{aligned}
& \int_{-\pi}^{\pi} I(t) D(x-t) d t=\text { integrate by parts }= \\
& \qquad \int_{-\pi}^{\pi} f(t) f(x-t) d t+\text { (boundary term }=0 \text { by periodicity) }
\end{aligned}
$$

The usual minus sign disappears because of 2nd minus sign: $\frac{d}{d t} D(x-t)=-f(x-t)$. NOTE: I have now learned that we can't just multiply sine coefficients $\left(k b_{k}\right)\left(-b_{k} / k\right)$ because that gives an unwanted minus sign as in $\int \sin t \sin (x-t) d t=-\pi \cos x$.
2) (33 pts.) (a) Compute directly the convolution $f * f$ (cyclic convolution with $N=6$) when $f=(0,0,0,1,0,0)$. [You could connect vectors $\left(f_{0}, \ldots, f_{5}\right)$ with polynomials $f_{0}+f_{1} w+\cdots+f_{5} w^{5}$ if you want to.]
(b) What is the Discrete Fourier Transform $c=\left(c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right)$ of the vector $f=(0,0,0,1,0,0) ?$ Still $N=6$.
(c) Compute $f * f$ another way, by using c in "transform space" and then transforming back.

With $N=6$ the complex number $w=e^{2 \pi i / 6}$ has $w^{3}=-1$ and $\bar{w}^{3}=-1$ and $w^{6}=1$.
(a) $f=(0,0,0,1,0,0)$ corresponds to w^{3}. Then $f * f$ corresponds to w^{6} which is 1 . So $f * f=(1,0,0,0,0,0)$. (Also seen by circulant matrix multiplication.)
(b) The transform $c=F^{-1} f=\frac{1}{6} \bar{F} f=\frac{1}{6}$ (column of \bar{F} with powers of $\bar{w}^{3}=-1$): Then $c=\frac{1}{6}(1,-1,1,-1,1,-1)$.
(c) The transform of $f * f$ is $\frac{6}{36}\left(1^{2},(-1)^{2}, 1^{2},(-1)^{2}, 1^{2},(-1)^{2}\right)=\frac{1}{6}(1,1,1,1,1,1)$.

Multiply that vector v by F to transform back and $F v=(1,0,0,0,0,0)$ as in part (a)!
3) (32 pts.) On page 310 Example 3, the Fourier integral transform of the one-sided decaying pulse $f(x)=e^{-a x}$ (for $x \geq 0$) $f(x)=0$ (for $x<0$) is computed for $-\infty<k<\infty$ as

$$
\widehat{f}(k)=\frac{1}{a+i k} .
$$

(a) Suppose this one-sided pulse is shifted to start at $x=L>0$:

$$
f_{L}(x)=e^{-a(x-L)} \text { for } x \geq L, \quad f_{L}(x)=0 \text { for } x<L
$$

Find the Fourier integral transform $\widehat{f}_{L}(k)$.
(b) Draw a rough graph of the difference $D(x)=f(x)-f_{L}(x)$, on the whole line $-\infty<x<\infty$. Find its transform $\widehat{D}(k)$. NOW LET $a \rightarrow 0$.

What is the limit of $D(x)$ as $a \rightarrow 0$?
What is the limit of $\widehat{D}(k)$ as $a \rightarrow 0$?
(c) The function $f_{L}(x)$ is smooth except for a jump at $x=L$, so the decay rate of $\widehat{f}_{L}(k)$ is $1 / k$. The convolution $C(x)=f_{L}(x) * f_{L}(x)$ has transform $\widehat{C}(k)=e^{-i 2 k L} /(a+i k)^{2}$ with decay rate $1 / k^{2}$. Then in x-space this convolution $C(x)$ has a corner (= ramp) at the point $x=\underline{2 L}$.
(a) $f_{L}(x)$ is $f(x-L)$. By the shift rule (page 317) $\widehat{f}_{L}(k)=e^{-i k L} \widehat{f}(k)=\frac{e^{-i k L}}{a+i k}$.

As $a \rightarrow 0, D(x)$ approaches 1 for $0<x<L, 0$ elsewhere

$$
\widehat{D}(k)=\frac{1}{a+i k}-\frac{e^{-i k L}}{a+i k} \text { approaches } \frac{1-e^{-i k l}}{i k}=\text { transform of square pulse. }
$$

(c) FILLED IN BLANKS ABOVE

