MIT OpenCourseWare
http://ocw.mit.edu

18.085 Computational Science and Engineering I

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Total

1) (36 pts.) (a) For $-\frac{d^{2} u}{d x^{2}}=\delta(x-a)$ with $u(0)=u(1)=0$, the solution is linear on both sides of $x=a$ (graph $=$ triangle from two straight lines). What is wrong with the next sentence? Integrating both sides of $-u^{\prime \prime}=\delta(x-a)$, from $x=0$ to $x=1$, the area under the triangle graph is 1 . The base is 1 so the height must be $u_{\max }=2$.
(b) If $u(x, a)$ is the true solution to that standard problem in part (a), and the load point $x=a$ approaches $x=1$, what function does the solution u approach? Give a physical reason for your answer or a math reason or both.

Integrating $\delta(x-a)$ does give 1 . But the area under the graph of $u(x)$ is $\int u(x) d x$ and not $\int-u^{\prime \prime}(x) d x$. (The integral of $-u^{\prime \prime}(x)=\delta(x-a)$ gives the drop in slope $u^{\prime}(0)-u^{\prime}(1)=1$.) So the reasoning is wrong and $u_{\max }$ is not 2 . The actual $u_{\max }$ is $(a-1) a$, because the true solution has slope $a-1$ up to the load point $x=a$. As that point approaches $a=1$, the solution $u(x)$ approaches zero. Physically, the load is moving close to the support. Then the load causes a smaller and smaller displacement.
2) (40 pts.) Which of these 5 equations can be solved?? If the equation has a solution, please find one. If not why not??
(a)

$$
\operatorname{div}\left[\begin{array}{l}
\partial u / \partial x \\
\partial u / \partial y
\end{array}\right]=1
$$

(b)

$$
\operatorname{div}\left[\begin{array}{c}
\partial s / \partial y \\
-\partial s / \partial x
\end{array}\right]=1
$$

(c) $u_{x x}+u_{y y}=0$ in the unit circle and $u(1, \theta)=\sin 4 \theta$ around the boundary
(d) Find a family of curves $u(x, y)=C$ that is everywhere perpendicular to the family of curves $x+x^{2}-y^{2}=C$.
(e) $d^{4} u / d x^{4}=\delta(x) \quad$ [point load at $x=0$, not requiring boundary conditions, any solution $u(x)$ is OK].
(a) This is Poisson's equation $u_{x x}+u_{y y}=1$. One solution is $u(x, y)=\frac{1}{2} x^{2}$.
(b) This equation is $\frac{\partial^{2} s}{\partial x \partial y}-\frac{\partial^{2} s}{\partial y \partial x}=1$. No solution since $s_{x y}=s_{y x}$.
(c) $u(r, \theta)=r^{4} \sin 4 \theta$ solves Laplace's equation and reduces to $\sin 4 \theta$ on the unit circle $r=1$.
(d) The function $x+x^{2}-y^{2}$ is the real part of $(x+i y)+(x+i y)^{2}$. So we get perpendicular curves from the imaginary part $y+2 x y=C$.
(e) $u=\left\{\begin{array}{cll}0 & \text { for } x \leq 0 \\ x^{3} / 6 & \text { for } x \geq 0\end{array} \quad \begin{array}{l}\text { has jump of } 1 \text { in } u^{\prime \prime \prime} \text { and } u^{\prime \prime \prime \prime}=\delta(x) \text { comes from integrating } \delta(x) \text { four times. }\end{array}\right.$
3) (24 pts.) I want to solve Laplace's equation (really Poisson's equation) in 3D with no boundaries (the whole space). The right side is a point load δ at the origin $(0,0,0)$. So $-\operatorname{div}(\operatorname{grad} u)=\delta$.
(a) Integrate both sides over a sphere of radius R around the origin:

$$
\iiint-\operatorname{div}(\operatorname{grad} u) d x d y d z=1
$$

Use the divergence theorem (or Gauss-Green) to transform that triple integral into an integral on the surface of the sphere of radius R.
(b) What is the normal vector n in that integral? Knowing that u must be radially symmetric, $\frac{\partial u}{\partial r}$ is a constant on the sphere of radius R. What is that constant?
(c) So what is $u(r)$?
(a) The divergence theorem transforms to a double integral for the flux through the sphere:

$$
\iint(\operatorname{grad} u) \cdot n d S=1
$$

(b) Since n is the outward (radial) unit vector, $(\operatorname{grad} u) \cdot n$ is the same as $\partial u / \partial r$. It is constant on the sphere (which has area $4 \pi R^{2}$) so its value is $1 / 4 \pi R^{2}$.
(c) If $\partial u / \partial r=1 / 4 \pi r^{2}$ whenever $r=R$, then $u(r)=1 / 4 \pi r$.

