MIT OpenCourseWare
http://ocw.mit.edu

18.085 Computational Science and Engineering I

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

SOLUTIONS 18.085 Quiz 1 Fall 2005

1) (a) The incidence matrix A is 12 by 9 . Its 4 th row comes from edge 4 :

$$
\text { Row } 4 \text { of } A=\left[\begin{array}{lllllllll}
0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0
\end{array}\right] \quad(\text { node } 5 \text { to node } 6)
$$

(b) The 5 th column of A indicates edges $3,4,9,10$ in and out of node 5:

$$
\text { Column } 5 \text { of } A=\left[\begin{array}{llllllllllll}
0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0
\end{array}\right]^{\prime}
$$

The $(5,5)$ entry in $A^{\mathrm{T}} A$ is $(\text { column } 5)^{\mathrm{T}}($ column 5$)=4$. The 5 th row of $A^{\mathrm{T}} A$ indicates nodes $2,4,6,8$ that are connected to node 5 :

$$
\text { Row } 5 \text { of } A^{\mathrm{T}} A(\text { also column } 5)=\left[\begin{array}{lllllllll}
0 & -1 & 0 & -1 & 4 & -1 & 0 & -1 & 0
\end{array}\right] \text {. }
$$

(c) There are 4 independent solutions to $A^{\mathrm{T}} w=0$ ($n-r=12-8=4=$ number of loops). The lower left loop uses edges 1,9 , back on 3 , back on 7 :

$$
w_{\text {loop }}=\left[\begin{array}{llllllllllll}
1 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0
\end{array}\right]^{\prime}
$$

(d) $A^{\mathrm{T}} A$ is not positive definite because $A u=0$ for $u=\left[\begin{array}{llll}1 & 1 & \ldots & 1\end{array}\right]^{\prime}=\operatorname{ones}(9,1)$.
2) (a) The equation $-u^{\prime \prime}=\delta(x-a)$ with $u(0)=0$ and $u^{\prime}(1)=0$ is solved by

$$
u(x)= \begin{cases}x & \text { for } x \leq a \\ a & \text { for } x \geq a\end{cases}
$$

The slope drops from 1 to 0 . The graph shows linear displacement above the load, constant below.

(b) As $a \rightarrow 1$ the displacement becomes $u(x)=x$. (Notice that this limit doesn't satisfy $u^{\prime}(1)=0$.) As $a \rightarrow 0$ the displacement becomes $u(x)=0$ everywhere (the bar hangs free).
(c) The matrix equation (notice the first and last row) will look like

$$
\left[\begin{array}{rrrr}
2 & -1 & & \\
-1 & 2 & -1 & \\
& \cdot & \cdot & \cdot \\
& & -1 & 1
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\cdot \\
u_{N}
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
\cdot \\
1
\end{array}\right]
$$

I put the load at the bottom. I should have divided the left side by h^{2} and the right side by h ! The solution is the last column of the inverse matrix. That column increases linearly just like the continuous case $u(x)=x$:

$$
\text { discrete } u=h\left[\begin{array}{c}
1 \\
2 \\
\cdot \\
\cdot \\
N
\end{array}\right] \quad \text { and perfection if } N h=1
$$

3) (a) If all measurements are correct, then after three steps we reach $u_{3}=b_{1}+b_{2}+b_{3}=b_{4}$. [If you add the first three equations you get $u_{3}=b_{1}+b_{2}+b_{3}$ and this must equal b_{4} for an exact solution.] The equation $A^{\mathrm{T}} A \widehat{u}=A^{\mathrm{T}} b$ for the best estimates has

$$
A=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1 \\
0 & 0 & 1
\end{array}\right] \quad A^{\mathrm{T}} A=\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right] \quad A^{\mathrm{T}} b=\left[\begin{array}{l}
b_{1}-b_{2} \\
b_{2}-b_{3} \\
b_{3}+b_{4}
\end{array}\right]
$$

(b) The picture has 3 masses and 4 springs with constants $c_{1}=c_{2}=c_{3}=c_{4}=1$. The forces on the masses should be $f=A^{\mathrm{T}} b$ (not just b). The left figure correctly matches the four original equations. The right figure gives the same $A^{\mathrm{T}} A$ (full credit for that figure also, since professors must get 100% by definition).

(c) The statistically best estimate takes the matrix $C=\operatorname{diag}\left(1 / \sigma_{1}^{2}, 1 / \sigma_{2}^{2}, 1 / \sigma_{3}^{2}, 1 / \sigma_{4}^{2}\right)=$ $\left(c_{1}, c_{2}, c_{3}, c_{4}\right)$. Then $A^{\mathrm{T}} C A \widehat{u}=A^{\mathrm{T}} C b$ is

$$
\begin{array}{rlrl}
\left(c_{1}+c_{2}\right) \widehat{u}_{1}-c_{2} \widehat{u}_{2} & & c_{1} b_{1}-c_{2} b_{2} \\
-c_{2} \widehat{u}_{1}+\left(c_{2}+c_{3}\right) \widehat{u}_{2}- & c_{3} \widehat{u}_{3} & =c_{2} b_{2}-c_{3} b_{3} \\
-c_{3} \widehat{u}_{2}+\left(c_{3}+c_{4}\right) \widehat{u}_{3} & =c_{3} b_{3}+c_{4} b_{4}
\end{array}
$$

If $\sigma_{4} \rightarrow \infty$ and $c_{4} \rightarrow 0$, the first 3 equations are solved exactly to give $u_{1}=b_{1}$ and $u_{2}=b_{1}+b_{2}$ and $u_{3}=b_{1}+b_{2}+b_{3}$.

