MIT OpenCourseWare
http://ocw.mit.edu

18.085 Computational Science and Engineering I

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.085 Quiz $1 \quad$ October 4, 2004

Professor Strang

Your name is: \quad SOLUTIONS

Grading 1 .

2.
3.

OPEN BOOK EXAM
4.

Write solutions onto these pages!
Circles around short answers please!!

1) (32 pts.) This problem is about the symmetric matrix

$$
H=\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

(a) By elimination find the triangular L and diagonal D in $H=L D L^{\mathrm{T}}$.
(b) What is the smallest number q that could replace the corner entry $H_{33}=1$ and still leave H positive semidefinite ? $q=$
(c) H comes from the 3 -step framework for a hanging line of springs: displacements \xrightarrow{A} elongations \xrightarrow{C} spring forces $\xrightarrow{A^{\mathrm{T}}}$ external force f What are the specific matrices A and C in $H=A^{\mathrm{T}} C A$?
(d) What are the requirements on any m by n matrix A and any symmetric matrix C for $A^{\mathrm{T}} C A$ to be positive definite?

1. $\left[\begin{array}{rrr}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1\end{array}\right] \longrightarrow\left[\begin{array}{rrr}2 & -1 & 0 \\ 0 & 3 / 2 & -1 \\ 0 & 0 & 1 / 3\end{array}\right]$
(a) $H=L D L^{\mathrm{T}}$ with $L=\left[\begin{array}{rrr}1 & 0 & 0 \\ -1 / 2 & 1 & 0 \\ 0 & -2 / 3 & 1\end{array}\right] \quad D=\left[\begin{array}{lll}2 & & \\ & 3 / 2 & \\ & & 1 / 3\end{array}\right]$
(b) If $q=\frac{2}{3}=H_{33}$ then H is only semidefinite.
(c) $A=\left[\begin{array}{rrr}1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]$ and $C=I$
(d) A must have n independent columns (full rank n)
C must be positive definite (to make $A^{\mathrm{T}} C A$ pos def for all those A)
2) (24 pts.) Suppose we make three measurements b_{1}, b_{2}, b_{3} at times t_{1}, t_{2}, t_{3}. They would fit exactly on a straight line $b=C+D t$ if we could solve

$$
\begin{aligned}
& C+D t_{1}=b_{1} \\
& C+D t_{2}=b_{2} \\
& C+D t_{3}=b_{3} .
\end{aligned}
$$

(a) If b_{1}, b_{2}, b_{3} are equally reliable what are the equations for the best values \widehat{C} and \widehat{D} ? Don't solve the equations-write them in terms of t 's and b's (not just some letter A).
(b) Suppose the errors in b_{1}, b_{2}, b_{3} are independent with variances $\sigma_{1}^{2}, \sigma_{2}^{2}, \sigma_{3}^{2}$ (covariances $=0$ because independent). Find the new equations for the best \widehat{C} and \widehat{D}. Use t 's, b 's and $c_{i}=1 / \sigma_{i}^{2}-$ by method (1) or (2)
(1) Remember how the covariance matrix Σ (called V in the book) enters the equations
(2) Divide the three equations above by $\sigma_{1}, \sigma_{2}, \sigma_{3}$. Then do ordinary least squares because the rescaled errors have variances $=1$.
(c) Suppose $\sigma_{1}=1, \sigma_{2}=1$, but $\sigma_{3} \rightarrow \infty$ so the third measurement is (exactly reliable) (totally unreliable) CROSS OUT ONE.

In this case the best straight line goes through which points?
2.
(a) $A^{\mathrm{T}} A \widehat{x}=A^{\mathrm{T}} b$ is $\left[\begin{array}{ll}1 & t_{1} \\ 1 & t_{2} \\ 1 & t_{3}\end{array}\right]\left[\begin{array}{l}\widehat{C} \\ \widehat{D}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$

$$
\begin{aligned}
3 \widehat{C}+\left(t_{1}+t_{2}+t_{3}\right) \widehat{D} & =b_{1}+b_{2}+b_{3} \\
\left(t_{1}+t_{2}+t_{3}\right) \widehat{C}+\left(t_{1}^{2}+t_{2}^{2}+t_{3}^{2}\right) \widehat{D} & =t_{1} b_{1}+t_{2} b_{2}+t_{3} b_{3}
\end{aligned}
$$

(b) $A^{\mathrm{T}} \Sigma^{-1} A \widehat{x}=A^{\mathrm{T}} \Sigma^{-1} b \quad$ OR $\quad A^{\mathrm{T}} C A \widehat{x}=A^{\mathrm{T}} C b$ with $c_{i}=1 / \sigma_{i}^{2}$

$$
\begin{aligned}
\left(c_{1}+c_{2}+c_{3}\right) \widehat{C}+\left(c_{1} t_{1}+c_{2} t_{2}+c_{3} t_{3}\right) \widehat{D} & =c_{1} b_{1}+c_{2} b_{2}+c_{3} b_{3} \\
\left(c_{1} t_{1}+c_{2} t_{2}+c_{3} t_{3}\right) \widehat{C}+\left(c_{1} t_{1}^{2}+c_{2} t_{2}^{2}+c_{3} t_{3}^{2}\right) \widehat{D} & =c_{1} t_{1} b_{1}+c_{2} t_{2} b_{2}+c_{3} t_{3} b_{3}
\end{aligned}
$$

(c) $\sigma_{3} \rightarrow \infty$ TOTALLY UNRELIABLE

The best line goes through the points $\left(t_{1}, b_{1}\right)$ and $\left(t_{2}, b_{2}\right)$
3) (20 pts.) (a) Suppose $\frac{d u}{d x}$ is approximated by a centered difference:

$$
\frac{d u}{d x} \approx \frac{u(x+\Delta x)-u(x-\Delta x)}{2 \Delta x}
$$

With equally spaced points $x=h, 2 h, 3 h, 4 h, 5 h=\frac{1}{6}, \frac{2}{6}, \frac{3}{6}, \frac{4}{6}, \frac{5}{6}$ and zero boundary conditions $u_{0}=u_{6}=0$, write down the 3 by 3 centered first difference matrix Δ :

$$
(\Delta u)_{i}=\frac{u_{i+1}-u_{i-1}}{2 h}
$$

Show that this matrix Δ is singular (because 3 is odd) by solving $\Delta u=0$.
(b) Removing the last row and column of a positive definite matrix K always leaves a positive definite matrix L. Why? Explain using one of the tests for positive definiteness.
3.
(a) $\Delta=\frac{1}{2 h}\left[\begin{array}{rrr}0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0\end{array}\right] \quad \Delta u=0$ for $u=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$
(b) 1. There is one less pivot and determinant to test.
2. $x^{\mathrm{T}} L x=\left[\begin{array}{ll}x^{\mathrm{T}} & 0\end{array}\right] K\left[\begin{array}{l}x \\ 0\end{array}\right]>0$ for $x \neq 0$
3. $\lambda_{\min }(L) \geq \lambda_{\min }(K)>0$. This important fact comes from $\lambda_{\min }(K)=\min \frac{x^{\mathrm{T}} K x}{x^{\mathrm{T}} x}$ the Rayleigh quotient.

Physically, if you hold the last mass in place then the natural frequencies of a line of springs will (increase) (decrease), as violinists know.
4) (24 pts.) The equation to solve is $-u^{\prime \prime}+u=\delta\left(x-\frac{1}{2}\right)$ with a unit point load at $x=\frac{1}{2}$ and zero boundary conditions $u(0)=u(1)=0$.
(a) Solve $-u^{\prime \prime}-u=0$ starting from $x=0$ with $u(0)=0$. There will be one arbitrary constant A. Replace x by $1-x$ in your answer, to solve $-u^{\prime \prime}-u=0$ ending at $u(1)=0$ with arbitrary constant B.
(b) Use the "jump conditions" at $x=\frac{1}{2}$ to find A and B.
4.
(a) $u(x)= \begin{cases}A \sin x & \text { for } x \leq \frac{1}{2} \\ B \sin (1-x) & \text { for } x \geq \frac{1}{2}\end{cases}$
(b) At $x=\frac{1}{2}: \quad A \sin \frac{1}{2}=B \sin \frac{1}{2} \quad$ so $A=B$

Drop in slope : $\quad A \cos \frac{1}{2}=-B \cos \frac{1}{2}+1 \quad$ so $A=\left(2 \cos \frac{1}{2}\right)^{-1}$

