18.085 Computational Science and Engineering I Fall 2008

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

Your PRINTED name is: <u>SOLUTIONS</u> Grading 1 2 3

1) (36 pts.) (a) Suppose u(x) is linear on each side of x = 0, with slopes u'(x) = A on the left and u'(x) = B on the right:

$$u(x) = \begin{cases} Ax & \text{for } x \le 0\\ Bx & \text{for } x \ge 0 \end{cases}$$

What is the second derivative u''(x)? Give the answer at every x.

(b) Take discrete values U_n at all the whole numbers x = n:

$$U_n = \begin{cases} An & \text{for } n \le 0\\ Bn & \text{for } n \ge 0 \end{cases}$$

For each n, what is the second difference $\Delta^2 U_n$? Using coefficients 1, -2, 1 (notice signs!) give the answer $\Delta^2 U_n$ at every n.

- (c) Solve the differential equation $-u''(x) = \delta(x)$ from x = -2 to x = 3with boundary values u(-2) = 0 and u(3) = 0.
- (d) Approximate problem (c) by a difference equation with $h = \Delta x = 1$. What is the matrix in the equation KU = F? What is the solution U?

Solutions.

(a)
$$u''(x) = (B - A) \,\delta(x)$$
. This is not $B - A$ at $x = 0$.
(b) $\Delta^2 u_n = \begin{cases} B - A & n = 0 \\ 0 & n \neq 0 \end{cases}$
(c) $u(x) = \begin{cases} 3/5 \, (x + 2) & -2 \le x \le 0 \\ 2/5 \, (3 - x) & 0 \le x \le 3 \end{cases}$
(d) $K_{+++} = \begin{bmatrix} 2 & -1 & \\ -1 & 2 & -1 & \\ & -1 & 2 & -1 \\ & & -1 & 2 \end{bmatrix} \quad U = \begin{bmatrix} 3/5 \\ 6/5 \\ 4/5 \\ 2/5 \end{bmatrix}$ fixed-fixed

U lies right on the graph of u(x)

- 2) (24 pts.) A symmetric matrix K is "positive definite" if $u^{T}Ku > 0$ for every nonzero vector u.
- (a) Suppose K is positive definite and u is a (nonzero) eigenvector, so $Ku = \lambda u$. From the definition above show that $\lambda > 0$. What solution u(t) to $\frac{du}{dt} = Ku$ comes from knowing this eigenvector and eigenvalue?
- (b) Our second-difference matrix K_4 has the form $A^{\mathrm{T}}A$:

$$K_4 = \begin{bmatrix} 1 & -1 & & \\ & 1 & -1 & \\ & & 1 & -1 \\ & & & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & & & \\ -1 & 1 & & \\ & -1 & 1 & \\ & & -1 & 1 \\ & & & -1 \end{bmatrix} = \begin{bmatrix} 2 & -1 & & \\ -1 & 2 & -1 & \\ & -1 & 2 & -1 \\ & & -1 & 2 \end{bmatrix}$$

Convince me how $K_4 = A^{\mathrm{T}}A$ proves that $u^{\mathrm{T}}K_4 u = u^{\mathrm{T}}A^{\mathrm{T}}A u > 0$ for every nonzero vector u. (Show me why $u^{\mathrm{T}}A^{\mathrm{T}}A u \ge 0$ and why > 0.)

(c) This matrix is positive definite for which b? Semidefinite for which b? What are its pivots??

$$S = \begin{bmatrix} 2 & b \\ b & 4 \end{bmatrix}$$

Solutions. (8 pts each)

(a) "... show that $\lambda > 0$ "

$$\begin{aligned} Ku &= \lambda u \\ u^{\mathrm{T}} Ku &= \lambda u^{\mathrm{T}} u \end{aligned} \quad \text{so} \quad \lambda = \frac{u^{\mathrm{T}} Ku}{u^{\mathrm{T}} u} > 0 \end{aligned}$$

"What solution $u(t) \dots$ "

$$u(t) = e^{\lambda t} u$$

(b)
$$u^{\mathrm{T}}A^{\mathrm{T}}Au = (Au)^{\mathrm{T}}(Au) \ge 0$$

The particular matrix A in this problem has independent columns. The only solution to Au = 0 is u = 0. So $u^{T}A^{T}Au > 0$ except when u = 0. Other proofs are *possible*.

(c) Positive definite if $b^2 < 8$

Semidefinite if $b^2 = 8$

Pivots 2 and $4 - \frac{b^2}{2}$

3) (40 pts.) (a) Suppose I measure (with possible error) u₁ = b₁ and u₂ - u₁ = b₂ and u₃ - u₂ = b₃ and finally u₃ = b₄. What matrix equation would I solve to find the best least squares estimate û₁, û₂, û₃? Tell me the matrix and the right side in Kû = f.

- (b) What 3 by 2 matrix A gives the spring stretching e = A u from the displacements u_1, u_2 of the masses?
- (c) Find the stiffness matrix $K = A^{T}CA$. Assuming positive c_1, c_2, c_3 show that K is invertible and positive definite.

Solutions.

(a) (12 points)

 $Au = b \qquad \text{is} \qquad \begin{bmatrix} 1 & & \\ -1 & 1 & \\ & -1 & 1 \\ & & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$ $\underbrace{A^{\mathrm{T}}A}_{K} \hat{u} = \underbrace{A^{\mathrm{T}}b}_{f} \qquad \text{is} \qquad \underbrace{\begin{bmatrix} 2 & -1 \\ -1 & 2 & -1 \\ -1 & 2 \end{bmatrix}}_{K} \begin{bmatrix} \hat{u}_1 \\ \hat{u}_2 \\ \hat{u}_3 \end{bmatrix} = \underbrace{\begin{bmatrix} b_2 - b_1 \\ b_3 - b_2 \\ b_4 + b_3 \end{bmatrix}}_{f}$ $\underbrace{K}_{3pts \ for numbers} \qquad \underbrace{K}_{3pts \ for numbers} \qquad \underbrace{K}_{3pts}$

(b) (10 points)
$$A = \begin{bmatrix} 1 & 0 \\ -1 & 0 \\ -1 & 1 \end{bmatrix}$$

(c) (16 points)
$$A^{\mathrm{T}}CA = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_1 & & \\ & c_2 & \\ & & & c_3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} c_1 + c_2 + c_3 & -c_3 \\ -c_3 & & c_3 \end{bmatrix}$$

Any of these proofs is OK:

(1) det =
$$c_1c_3 + c_2c_3 > 0$$

- (2) $A^{\mathrm{T}}CA$ always positive definite with independent columns in A
- (3) other ideas ...