MIT OpenCourseWare
http://ocw.mit.edu

18.085 Computational Science and Engineering I

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.085 Quiz 1 October 2, 2006 Professor Strang

Your PRINTED name is: SOLUTIONS \quad Grading $\begin{aligned} & 1 \\ & 2\end{aligned}$ 3

1) (36 pts.) (a) Suppose $u(x)$ is linear on each side of $x=0$, with slopes $u^{\prime}(x)=A$ on the left and $u^{\prime}(x)=B$ on the right:

$$
u(x)= \begin{cases}A x & \text { for } x \leq 0 \\ B x & \text { for } x \geq 0\end{cases}
$$

What is the second derivative $u^{\prime \prime}(x)$? Give the answer at every x.
(b) Take discrete values U_{n} at all the whole numbers $x=n$:

$$
U_{n}= \begin{cases}A n & \text { for } n \leq 0 \\ B n & \text { for } n \geq 0\end{cases}
$$

For each n, what is the second difference $\Delta^{2} U_{n}$? Using coefficients $1,-2,1$ (notice signs!) give the answer $\Delta^{2} U_{n}$ at every n.
(c) Solve the differential equation $-u^{\prime \prime}(x)=\delta(x)$ from $x=-2$ to $x=3$ with boundary values $u(-2)=0$ and $u(3)=0$.
(d) Approximate problem (c) by a difference equation with $h=\Delta x=1$. What is the matrix in the equation $K U=F$? What is the solution U ?

Solutions.

(a) $u^{\prime \prime}(x)=(B-A) \delta(x)$. This is not $B-A$ at $x=0$.
(b) $\Delta^{2} u_{n}=\left\{\begin{array}{cc}B-A & n=0 \\ 0 & n \neq 0\end{array}\right.$
(c) $u(x)=\left\{\begin{array}{lr}3 / 5(x+2) & -2 \leq x \leq 0 \\ 2 / 5(3-x) & 0 \leq x \leq 3\end{array}\right.$
(d) $K_{+++}=\left[\begin{array}{rrrr}2 & -1 & & \\ -1 & 2 & -1 & \\ & -1 & 2 & -1 \\ & & -1 & 2\end{array}\right] \quad U=\left[\begin{array}{l}3 / 5 \\ 6 / 5 \\ 4 / 5 \\ 2 / 5\end{array}\right] \quad \begin{aligned} & \text { fixed- } \\ & \text { fixed }\end{aligned}$
U lies right on the graph of $u(x)$
2) (24 pts.) A symmetric matrix K is "positive definite" if $u^{\mathrm{T}} K u>0$ for every nonzero vector u.
(a) Suppose K is positive definite and u is a (nonzero) eigenvector, so $K u=\lambda u$. From the definition above show that $\lambda>0$. What solution $u(t)$ to $\frac{d u}{d t}=K u$ comes from knowing this eigenvector and eigenvalue?
(b) Our second-difference matrix K_{4} has the form $A^{\mathrm{T}} A$:

$$
K_{4}=\left[\begin{array}{rrrrr}
1 & -1 & & & \\
& 1 & -1 & & \\
& & 1 & -1 & \\
& & & 1 & -1
\end{array}\right]\left[\begin{array}{rrrr}
1 & & & \\
-1 & 1 & & \\
& -1 & 1 & \\
& & -1 & 1 \\
& & & -1
\end{array}\right]=\left[\begin{array}{rrrr}
2 & -1 & & \\
-1 & 2 & -1 & \\
& -1 & 2 & -1 \\
& & -1 & 2
\end{array}\right]
$$

Convince me how $K_{4}=A^{\mathrm{T}} A$ proves that $u^{\mathrm{T}} K_{4} u=u^{\mathrm{T}} A^{\mathrm{T}} A u>0$ for every nonzero vector u. (Show me why $u^{\mathrm{T}} A^{\mathrm{T}} A u \geq 0$ and why >0.)
(c) This matrix is positive definite for which b ? Semidefinite for which b ? What are its pivots??

$$
S=\left[\begin{array}{ll}
2 & b \\
b & 4
\end{array}\right]
$$

Solutions. (8 pts each)
(a) "...show that $\lambda>0$ "

$$
\begin{aligned}
K u & =\lambda u \\
u^{\mathrm{T}} K u & =\lambda u^{\mathrm{T}} u \quad \text { so } \quad \lambda=\frac{u^{\mathrm{T}} K u}{u^{\mathrm{T}} u}>0
\end{aligned}
$$

"What solution $u(t) \ldots$ "

$$
u(t)=e^{\lambda t} u
$$

(b) $u^{\mathrm{T}} A^{\mathrm{T}} A u=(A u)^{\mathrm{T}}(A u) \geq 0$

The particular matrix A in this problem has independent columns. The only solution to $A u=0$ is $u=0$. So $u^{\mathrm{T}} A^{\mathrm{T}} A u>0$ except when $u=0$. Other proofs are possible.
(c) Positive definite if $b^{2}<8$

Semidefinite if $b^{2}=8$
Pivots 2 and $4-\frac{b^{2}}{2}$
3) (40 pts.) (a) Suppose I measure (with possible error) $u_{1}=b_{1}$ and $u_{2}-u_{1}=b_{2}$ and $u_{3}-u_{2}=b_{3}$ and finally $u_{3}=b_{4}$. What matrix equation would I solve to find the best least squares estimate $\widehat{u}_{1}, \widehat{u}_{2}, \widehat{u}_{3}$? Tell me the matrix and the right side in $K \widehat{u}=f$.

(b) What 3 by 2 matrix A gives the spring stretching $e=A u$ from the displacements u_{1}, u_{2} of the masses?
(c) Find the stiffness matrix $K=A^{\mathrm{T}} C A$. Assuming positive c_{1}, c_{2}, c_{3} show that K is invertible and positive definite.

Solutions.
(a) (12 points)

$$
\begin{aligned}
& A u=b \quad \text { is } \quad\left[\begin{array}{rrr}
1 & & \\
-1 & 1 & \\
& -1 & 1 \\
& & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right] \\
& \underbrace{A_{3 p t s}^{\mathrm{T}} A}_{K} \widehat{u}=\underbrace{A^{\mathrm{T}} b}_{f} \quad \text { ists } \quad \underbrace{\left[\begin{array}{rrr}
2 & -1 & \\
-1 & 2 & -1 \\
-1 & 2
\end{array}\right]}_{\begin{array}{c}
K \\
\text { 3pts for } \\
\text { numbers }
\end{array}}\left[\begin{array}{l}
\widehat{u}_{1} \\
\widehat{u}_{2} \\
\widehat{u}_{3}
\end{array}\right]=\underbrace{\left[\begin{array}{l}
b_{2}-b_{1} \\
b_{3}-b_{2} \\
b_{4}+b_{3}
\end{array}\right]}_{f}
\end{aligned}
$$

(b) (10 points) $A=\left[\begin{array}{rr}1 & 0 \\ -1 & 0 \\ -1 & 1\end{array}\right]$
(c) (16 points) $A^{\mathrm{T}} C A=\left[\begin{array}{rrr}1 & -1 & -1 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}c_{1} & & \\ & c_{2} & \\ & & c_{3}\end{array}\right]\left[\begin{array}{rr}1 & 0 \\ -1 & 0 \\ -1 & 1\end{array}\right]=\left[\begin{array}{ll}c_{1}+c_{2}+c_{3} & -c_{3} \\ -c_{3} & c_{3}\end{array}\right]$

Any of these proofs is OK:
(1) det $=c_{1} c_{3}+c_{2} c_{3}>0$
(2) $A^{\mathrm{T}} C A$ always positive definite with independent columns in A
(3) other ideas ...

