MIT OpenCourseWare
http://ocw.mit.edu

18.085 Computational Science and Engineering I

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Solutions

18.085 Quiz $1 \quad$ Professor Strang October 6, 2003

1) (30 pts .) A system with 2 springs and masses is fixed-free. Constants arc c_{1}, c_{2}.

(a) Write down the matrices A and $K=A^{\mathrm{T}} C A$.

$$
A=\left[\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right] \quad K=\left[\begin{array}{rr}
c_{1}+c_{2} & -c_{2} \\
-c_{2} & c_{2}
\end{array}\right]
$$

(b) Prove by two tests (pivots, determinants, independence of columns of A) that this matrix K is (positive definite) (positive semidefinite). Tell me which two tests you are using!

Detcrminants of $K: c_{1}+c_{2}(1 \times 1)$ and $c_{1} c_{2}(2 \times 2)$
Pivots of $K: c_{1}+c_{2}$ and $c_{1} c_{2} /\left(c_{1}+c_{2}\right)$
Independence of columns of $A:(1,-1)$ and $(0,1)$
All prove positive definiteness of K.
(c) Multiply column times row to compute the "element matrices" K_{1}, K_{2} :

$$
\begin{aligned}
\text { Compute } \quad K_{1} & =\left(\text { column } 1 \text { of } A^{\mathrm{T}}\right)\left(c_{1}\right)(\text { row } 1 \text { of } A) \\
& =c_{1}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \\
\text { Compute } \quad K_{2} & =\left(\text { column } 2 \text { of } A^{\mathrm{T}}\right)\left(c_{2}\right)(\text { row } 2 \text { of } A) \\
& =c_{2}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]
\end{aligned}
$$

Then $K=K_{1}+K_{2}$. What vectors solve $K_{2}\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$?

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
C \\
C
\end{array}\right]
$$

For those displacements x_{1} and x_{2}, what is the energy in spring 2? Zcro (no strctching!)
2) (33 pts.) A network of nodes and edges and their conductances $c_{i}>0$ is drawn without arrows. Arrows don't affect the answers to this problem; the edge numbers are with the c 's. Node $\check{5}$ is grounded (potential $u_{5}=0$).

(a) List all positions (i, j) of the 4 by 4 matrix $K=A^{\mathrm{T}} C A$ that will have zero entries. What is row 1 of K ?

No bars node 1 to node 3 , node 1 to node 4 (and 3 to 5). So $K_{13}=$ $K_{31}=K_{14}=K_{41}=0$ (and $K_{\text {unreduced }}$ would have $K_{35}=K_{53}=0$: not asked).

Row 1 of K comes from bar 1: $\left[c_{1}+c_{3},-c_{1}, 0,0\right]$
(b) Find as many independent solutions as possible to Kirchhoff's Law $A^{\mathrm{T}} y=0$.

Here we need arrows (sorry) to give consistent signs:

$$
y_{1}=\left[\begin{array}{r}
1 \\
0 \\
-1 \\
1 \\
0 \\
0 \\
0
\end{array}\right] ; \quad y_{1}=\left[\begin{array}{r}
0 \\
0 \\
0 \\
-1 \\
1 \\
0 \\
1
\end{array}\right] ; \quad y_{1}=\left[\begin{array}{r}
0 \\
1 \\
0 \\
0 \\
-1 \\
1 \\
0
\end{array}\right]
$$

(c) Is $A^{\mathrm{T}} A$ always positive definite for cvery matrix A ?

No. (A is any matrix)
If there is a test on A, what is it?
(A must have independent columns. It can be tall and thin!)
What is the trick that proves $u^{\mathrm{T}} K u \geq 0$ for cvery vector u ?
$u^{\mathrm{T}} K u=\left(u^{\mathrm{T}} A^{\mathrm{T}}\right) C(A u)=e^{\mathrm{T}} C e=c_{1} e_{1}^{2}+\cdots+c_{m} e_{m}^{2}$.
3) (37 pts.) Make the network in Problem 2 into a 7 -bar truss! The grounded node $\overline{5}$ is now a supported (but turnable) pin joint, with known displacements $u_{5}^{\mathrm{H}}=u_{5}^{\mathrm{V}}=0$. All angles are 45° or 90°.

(a) How many rows and columns in the (reduced) matrix A, after we know $u_{5}^{\mathrm{H}}=u_{5}^{\mathrm{V}}=0$?
7 rows (7 bars) and 8 columns (8 unknown u 's).
Describe in words (or a picture) all solutions to $A u=0$.
$A u=0$ when $u=$ rigid rotation around node $\overline{5}$. (A has a 1-dimensional nullspacc.)

If you add 1 bar can A become square and invertible?
Not invertible since rotation is still allowed.
(b) Write out row 2 of A, corresponding to bar 2 .

Row $2=\left[\begin{array}{llllllll}0 & 0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 & 0\end{array}\right]$
Then (row 2) times the column u of displacements has what physical mcaning?
(Row 2) u is the infinitesimal stretching of bar 2 in response to the small displacements u.
(c) What is the first cquation of $A^{\mathrm{T}} w=f$ (with right side f_{1}^{H})?

The first cquation is the horizontal force balance at node 1 . Since y measures stretching (rather than compression) according to our convention, the horizontal force balance at node 1 is $y_{1}=-f_{1}^{\mathrm{H}}$.

Why docs $\frac{1}{2} u^{\mathrm{T}} K u=\frac{1}{2} y^{\mathrm{T}} C^{-1} y$ and what docs this quantity represent physically?
$\frac{1}{2} u^{\mathrm{T}} K u=\frac{1}{2} e^{\mathrm{T}} C e=\frac{1}{2} y^{\mathrm{T}} C^{-1} y$ represents the internal energy in the 7 bars.

