MIT OpenCourseWare
http://ocw.mit.edu

18.085 Computational Science and Engineering I

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Your name is: Grading

1) ($\mathbf{3 0} \mathbf{~ p t s}$.$) A system with 2$ springs and masses is fixed-free. Constants are c_{1}, c_{2}.

(a) Write down the matrices A and $K=A^{\mathrm{T}} C A$.
(b) Prove by two tests (pivots, determinants, independence of columns of A) that this matrix K is (positive definite) (positive semidefinite). Tell me which two tests you are using!
(c) Multiply column times row to compute the "element matrices" K_{1}, K_{2} :

$$
\begin{array}{r}
\text { Compute } K_{1}=\left(\text { column } 1 \text { of } A^{\mathrm{T}}\right)\left(c_{1}\right)(\text { row } 1 \text { of } A) \\
\text { Compute } K_{2}=\left(\text { column } 2 \text { of } A^{\mathrm{T}}\right)\left(c_{2}\right)(\text { row } 2 \text { of } A) . \\
\text { Then } K=K_{1}+K_{2} \text {. What vectors solve } K_{2}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] ?
\end{array}
$$ For those displacements x_{1} and x_{2}, what is the energy in spring 2?

2) (33 pts.) A network of nodes and edges and their conductances $c_{i}>0$ is drawn without arrows. Arrows don't affect the answers to this problem; the edge numbers are with the c 's. Node $\overline{5}$ is grounded (potential $u_{5}=0$).

(a) List all positions (i, j) of the 4 by 4 matrix $K=A^{\mathrm{T}} C A$ that will have zero entries. What is row 1 of K ?
(b) Find as many independent solutions as possible to Kirchhoff's Law $A^{\mathrm{T}} y=0$.
(c) Is $A^{\mathrm{T}} A$ always positive definite for every matrix A ? If there is a test on A, what is it? What is the trick that proves $u^{\mathrm{T}} K u \geq 0$ for every vector u ?
3) (37 pts.) Make the network in Problem 2 into a 7-bar truss! The grounded node $\overline{5}$ is now a supported (but turnable) pin joint, with known displacements $u_{5}^{\mathrm{H}}=u_{5}^{\mathrm{V}}=0$. All angles are 45° or 90°.

(a) How many rows and columns in the (reduced) matrix A, after we know $u_{5}^{\mathrm{H}}=u_{5}^{\mathrm{V}}=0$? Describe in words (or a picture) all solutions to $A u=0$. If you add 1 bar can A become square and invertible?
(b) Write out row 2 of A, corresponding to bar 2 . Then (row 2) times the column u of displacements has what physical meaning?
(c) What is the first equation of $A^{\mathrm{T}} w=f$ (with right side f_{1}^{H})? Why does $\frac{1}{2} u^{\mathrm{T}} K u=\frac{1}{2} y^{\mathrm{T}} C^{-1} y$ and what does this quantity represent physically? (More than 1 word in that last answer, less than 10 words.)
