MIT OpenCourseWare
http://ocw.mit.edu

18.085 Computational Science and Engineering I

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

1 Question 1

If you ordered the bars in the same order as the nodes (starting with bar 1 between nodes 1 and 2),

$$
A=\frac{1}{\sqrt{2}}\left(\begin{array}{cccccccc}
1 & 1 & -1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & -1 & 1 & 1 \\
-1 & 1 & 0 & 0 & 0 & 0 & 1 & -1
\end{array}\right)
$$

You'd still get credit if you used a different order.
There were many ways to give an independent set of solutions. Here's one independent set:

- the entire truss moves to the right
- the entire truss moves up
- the truss rotates clockwise about the origin
- nodes 1 and 3 move out, nodes 2 and 4 move in

The vectors corresponding to those solutions would be the columns of this matrix:

$$
\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0
\end{array}\right)
$$

2 Question 2

Multiplying the equation by $v(x)$ and integrating from 0 to 1 ,

$$
\left[-e^{x} \frac{d u}{d x} v(x)\right]_{0}^{1}+\int_{0}^{1} e^{x} \frac{d u}{d x} \frac{d v}{d x} d x=v(a)
$$

If you drop the first term, you get the weak form. This first term is already zero at $x=0$ because of the boundary conditions on $u(x)$. To make it be zero at $x=1$, you need to impose

$$
v(1)=0
$$

which both test functions in this example satisfy.

Substituting $u(x)=U_{1} \phi_{1}(x)+U_{2} \phi_{2}(x)$ and both $v(x)=V_{1}(x)$ and $v(x)=$ $V_{2}(x)$ into the weak form above gives a system of equations $K U=F$ where

$$
\begin{aligned}
K & =\left(\begin{array}{cc}
\frac{e^{a}-1}{a^{2}} & \frac{1-e^{a}}{a^{2}} \\
\frac{1-e^{a}}{a^{2}} & \frac{e^{a}-1}{a^{2}}+\frac{e-e^{a}}{(1-a)^{2}}
\end{array}\right) \\
F & =\binom{0}{1}
\end{aligned}
$$

K_{e} is the same as K above except with the integrals performed only over the interval 0 to a. The result is the same except the lower right entry is missing the second term.

