MIT OpenCourseWare
http://ocw.mit.edu

18.085 Computational Science and Engineering I

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.085 FALL 2002 QUIZ 3 SOLUTIONS

PROBLEM 1

a) The graph looks like a symmetric butterfly. It is pcriodic with no discontinuitics (but has kinks at $x=0$ and $x=k \pi$, where the slope jumps).

$$
\begin{aligned}
c_{k} & =\frac{1}{2 \pi}\left(\int_{-\pi}^{0} e^{x} e^{-i k x} d x+\int_{0}^{\pi} e^{-x} e^{-i k x} d x\right) \\
& =\frac{1}{2 \pi}\left(\int_{-\pi}^{0} e^{x-i k x} d x+\int_{0}^{\pi} e^{-x-i k x} d x\right) \\
& =\frac{1}{2 \pi}\left(\frac{1}{1-i k}\left(1-e^{-\pi}(-1)^{k}\right)+\frac{1}{-1-i k}\left(e^{-\pi}(-1)^{k}-1\right)\right) \\
& =\frac{1-e^{-\pi}(-1)^{k}}{\pi\left(k^{2}+1\right)}, \operatorname{using} e^{i k \pi}=e^{-i k \pi}=(-1)^{k}
\end{aligned}
$$

b) $d f / d x$: The right half of the graph becomes $-e^{-x}$: now it's an odd butterfly. $d^{2} f / d x^{2}$: Back to the even butterfly with δ-functions $-2 \delta(x)$ and $2 e^{-\pi} \delta(x-\pi)$. The δ-functions come from jumps in $d f / d x$.
c) From b)

$$
-\frac{d^{2} f}{d x^{2}}+f=2 \delta(x)-2 e^{-\pi} \delta(x-\pi)
$$

If

$$
f(x)=\sum c_{k} e^{i k x}
$$

then $\left(\operatorname{recall} \delta(x)=\frac{1}{2 \pi} \sum e^{i k \pi}, \frac{d}{d x} \rightarrow i k\right)$:

$$
\begin{aligned}
\sum c_{k} k^{2} e^{i k x}+\sum c_{k} e^{i k x} & =\frac{1}{\pi} \sum e^{i k x}-\frac{1}{\pi} e^{-\pi} \sum e^{i k(x-\pi)} \\
& =\frac{1}{\pi} \sum e^{i k x}-\frac{1}{\pi}(-1)^{k} e^{-\pi} \sum e^{i k x}
\end{aligned}
$$

Equate cocfficients of like terms:

$$
\left(k^{2}+1\right) c_{k}=\frac{1}{\pi}\left(1-(-1)^{k} e^{-\pi}\right)
$$

The solution of this algebraic equation is the same answer as before,

$$
c_{k}=\frac{1-(-1)^{k} e^{-\pi}}{\pi\left(k^{2}+1\right)}
$$

PROBLEM 2

a) The casicst way to perform this convolution is the matrix way:

$$
u * v=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
2 \\
0 \\
2
\end{array}\right]
$$

b)

$$
\left.\begin{array}{l}
c=F^{-1} u=\frac{1}{4}\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -i & -1 & i \\
1 & -1 & 1 & -1 \\
1 & i & -1 & -i
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
\frac{1}{2} \\
0
\end{array}\right] \\
d=F^{-1} v=\frac{1}{4}\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -i & -1 & i \\
1 & -1 & 1 & -1 \\
1 & i & -1 & -i
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{r}
\frac{1}{2} \\
0 \\
-\frac{1}{2} \\
0
\end{array}\right] \\
h
\end{array}\right]=c d=\left[\begin{array}{r}
\frac{1}{4} \\
0 \\
-\frac{1}{4} \\
0
\end{array}\right] \quad .
$$

Then

$$
u * v=4 F h=4\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right]\left[\begin{array}{r}
\frac{1}{4} \\
0 \\
-\frac{1}{4} \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
2 \\
0 \\
2
\end{array}\right]
$$

The answer in part a) is confirmed!
c) We have

$$
\operatorname{DFT}(u * z)=\left(\frac{1}{2} C_{1}, 0, \frac{1}{2} C_{3}, 0\right)
$$

Thercfore, we need $C_{1}=0, C_{3}=0$ in order to have $u * z=(0,0,0,0)$. So the Fouricr cocfficients of z must be $(0, a, 0, b)$ for any a and b. Then

$$
z=F\left[\begin{array}{l}
0 \\
a \\
0 \\
b
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right]\left[\begin{array}{l}
0 \\
a \\
0 \\
b
\end{array}\right]=\left[\begin{array}{r}
a+b \\
i(a-b) \\
-(a+b) \\
-i(a-b)
\end{array}\right]
$$

This can be expressed more simply as

$$
z=\left[\begin{array}{r}
x \\
y \\
-x \\
-y
\end{array}\right]
$$

We can check this result by convolution:
$\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]\left[\begin{array}{c}x \\ y \\ -x \\ -y\end{array}\right]=0$

PROBLEM 3

a) Since $f(x)$ vanishes outside of $[-1,1]$ the limits of intcgration are -1 and 1 :

$$
\hat{f}(k)=-\int_{-1}^{0} e^{-i k x} d x+\int_{0}^{1} e^{-i k x} d x=2 i \frac{\cos k-1}{k}
$$

b) Multiply by $i k$ for the derivative:

$$
\hat{D}(k)=2-e^{i k}-e^{-i k}=-2(\cos k-1)
$$

Convolution becomes multiplication in the Fouricr domain. Thercfore the transform is

$$
\hat{C}(k)=\hat{D}(k) \hat{f}(k)=-4 i \frac{(\cos k-1)^{2}}{k} .
$$

This confirms that the derivative $D=d f / d x$ consists of δ-functions at $x=0,-1,1$.

