MIT OpenCourseWare
http://ocw.mit.edu

18.085 Computational Science and Engineering I

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.085-Mathematical Methods for Engineers I Prof. Gilbert Strang Solutions - Problem Set 5

Section 2.7, Problem 1: How many independent solutions to $A u=0$. Draw them and find solutions $u=\left(u_{1}^{H}, u_{1}^{V}, \ldots, u_{4}^{H}, u_{4}^{V}\right)$. What shapes are A and $A^{\mathrm{T}} A$? First rows?

6 bars $\Rightarrow n=2(6)-4=8$ unknown disp. So $A u=0$ has $8-6=2$ independent solutions (mechanisms).

$$
A=6 \times 8 \text { matrix } \quad A^{\mathrm{T}}=8 \times 6 \text { matrix } \quad A^{\mathrm{T}} A=8 \times 8 \text { matrix }
$$

First row of A :

$$
\left[\begin{array}{cccccccc}
-1 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

First row of $A^{\mathrm{T}} A$:

$$
\left[\begin{array}{cccccccc}
1 & 0 & -1 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Section 2.7, Problem 2: 7 bars, $N=5$ so $n=2 N-r=2(5)-2=8$ unknown displacements.
a) What motion solves $A u=0$?
b) By adding one bar, can A become square/invertible?
c) Write out row 2 of A (for bar 2 at 45° angle).
d) Third equation in $A^{\mathrm{T}} w=f$ with right side f_{2}^{H} ?

Solution:
a) $8-7=1$ rigid motion, rotation about node 5 .
b) No \rightarrow rigid motion only, so adding a bar won't get rid of motion. Needs another support.
c) $\left[\begin{array}{lllllll}0 & 0 & -\cos \left(\frac{\pi}{2}\right) & \sin \left(\frac{\pi}{2}\right) & \cos \left(\frac{\pi}{2}\right) & -\sin \left(\frac{\pi}{2}\right) & 0 \\ 0\end{array}\right]=\left[\begin{array}{llllllll}0 & 0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 & 0\end{array}\right]$.
d) $w_{1}+f_{2}^{H}+w_{4} \cos \theta+w_{2} \cos \theta=0$.

$$
-f_{2}^{H}=w_{1}+w_{4} \cos \theta-w_{2} \cos \theta, \quad \cos \theta=1 / \sqrt{2} .
$$

Section 2.7, Problem 3:

a) Find 8-4 independent solutions to $A u=0$.
b) Find 4 sets of f 's so $A^{\mathrm{T}} w=f$ has a solution.
c) Check that $u^{\mathrm{T}} f=0$ for those four u 's and $f^{\prime} \mathrm{s}$.
a) Solutions:

| horizontal: | u_{1} | $=\left[\begin{array}{rrrrrrrr}1 & 0 & 1 & 0 & 1 & 0 & 1 & 0\end{array}\right]$ |
| ---: | :--- | ---: | :--- |
| vertical: | u_{2} | $=\left[\begin{array}{lrrrrrrr}0 & 1 & 0 & 1 & 0 & 1 & 0 & 1\end{array}\right]$ |
| rotation (about node 3): | u_{3} | $=\left[\begin{array}{rrrrrrrr}1 & 0 & 1 & -1 & 0 & 0 & 0 & -1\end{array}\right]$ |
| mechanism: | u_{4} | $=\left[\begin{array}{rrrrrrrr}1 & 0 & 1 & 0 & 0 & 0 & 0 & 0\end{array}\right]$. |

b) $f_{1}=\left[\begin{array}{r}1 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right] \quad f_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0\end{array}\right] \quad f_{3}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ -1\end{array}\right] \quad f_{4}=\left[\begin{array}{r}0 \\ 0 \\ 0 \\ 0 \\ -1 \\ 0 \\ 1 \\ 0\end{array}\right]$
c) Each $u_{i}^{\mathrm{T}} f_{j}=0$

Section 2.7, Problem 5: Is $A^{\mathrm{T}} A$ positive definite? Semidefinite? Draw complete set of mechanisms.

8 bars, 7 nodes, 4 fixed displacements $\left(u_{6}^{H}, u_{6}^{V}, u_{7}^{H}, u_{7}^{V}\right)$. So $n=2(7)-4=10$, and $10-8=2$ solutions.

There are 2 solutions, therefore the truss is unstable \rightarrow not positive definite.
$A^{\mathrm{T}} A$ must be positive semidefinite because A has dependent columns.

Section 3.1, Problem 1: Constant c, decreasing $f=1-x$, find $w(x)$ and $u(x)$ as in equations 9-10. Solve with $w(1)=0, u(1)=0$.

$$
\begin{aligned}
w(x) & =-\int_{0}^{x}(1-s) d s+C_{1}=\left(-x+\frac{x^{2}}{2}\right)+C_{1} \\
w(1) & =0 \Rightarrow-\left(1-\frac{1}{2}\right)+C_{1}=0 \Rightarrow C_{1}=\frac{1}{2} \\
\Rightarrow w(x) & =\frac{x^{2}}{2}-x+\frac{1}{2} \\
u(x) & =\int_{0}^{x} \frac{w(s)}{c(s)} d s=\frac{1}{c} \int_{0}^{x}\left(\frac{s^{2}}{2}-s+\frac{1}{2}\right) d s=\frac{1}{c}\left(\frac{x^{3}}{6}-\frac{x^{2}}{2}+\frac{x}{2}\right)+C_{2} .
\end{aligned}
$$

Case 1: $u(0)=0 \Rightarrow 0+C_{2}=0 \Rightarrow C_{2}=0$.

$$
u(x)=\frac{1}{c}\left(\frac{x^{3}}{6}-\frac{x^{2}}{2}+\frac{x}{2}\right)
$$

Case 2: $u(1)=0$ and $u(0)=0$ (fixed, fixed).

$$
\begin{aligned}
u(x) & =\frac{1}{c} \int_{0}^{x}\left(\frac{s^{2}}{2}-s+C_{1}\right) d s=\frac{1}{c}\left[\frac{s^{3}}{6}-\frac{s^{2}}{2}+C_{1} s\right]_{0}^{x} \\
& =\frac{1}{c}\left(\frac{x^{3}}{6}-\frac{x^{2}}{2}+C_{1} x+C_{2}\right) \\
u(0)=0 & \Rightarrow C_{2}=0 \\
u(1)=0 & \Rightarrow \frac{1}{c}\left(\frac{1}{6}-\frac{1}{2}+C_{1}\right)=0 \Rightarrow C_{1}=\frac{1}{3}
\end{aligned}
$$

$$
u(x)=\frac{1}{c}\left(\frac{x^{3}}{6}-\frac{x^{2}}{2}+\frac{x}{3}\right)
$$

Section 3.1, Problem 5: $f=$ constant, c jumps from $c=1$ for $x \leq \frac{1}{2}$ to $c=2$ for $x>\frac{1}{2}$. Solve $-\frac{d w}{d x}=f$ with $w(1)=0$ as before, then solve $c \frac{d u}{d x}=w$ with $u(0)=0$.
$w(x)=\int_{x}^{1} f d x=(1-x) f$
For $0 \leq x \leq \frac{1}{2}, \frac{\partial u}{\partial x}=(1-x) f, u(0)=0 \rightarrow u(x)=\int_{0}^{x}(1-x) f d x=\left(x-\frac{x^{2}}{2}\right) f$. So $u\left(\frac{1}{2}\right)=\frac{3}{8} f$.
For $\frac{1}{2} \leq x \leq 1, \frac{\partial u}{\partial x}=(1-x) f, u\left(\frac{1}{2}\right)=\frac{3}{8} f \rightarrow u(x)=\frac{f}{2} \int_{1 / 2}^{x}(1-x) f d x+u\left(\frac{1}{2}\right)=\frac{7}{16}-\frac{1}{4} f(1-x)^{2}$.
In summary,

$$
u(x)=(1-x) f \quad u(x)= \begin{cases}\left(x-\frac{x^{2}}{2}\right) f, & 0 \leq x \leq \frac{1}{2} \\ \frac{7}{16} f-\frac{1}{4} f(1-x)^{2}, & \frac{1}{2} \leq x \leq 1\end{cases}
$$

Section 3.1, Problem 10: Use three hat functions with $h=\frac{1}{4}$ to solve $-u^{\prime \prime}=2$ with $u(0)=u(1)=0$. Verify that the approximation U matches $u=x-x^{2}$ at the nodes.

1) $\int_{0}^{1} c(x) \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} d x=\int_{0}^{1} f(x) v(x) d x$.
2) $v_{i}=\phi_{i}$
3) Assume $c(x)=1$.
4) Let $f(x)=1$.

$$
\begin{aligned}
& F_{1}= \int_{0}^{1 / 2} 1 \cdot \phi_{1}(x) d x=\frac{1}{2} b h=\frac{1}{2} \cdot \frac{1}{2} \cdot 1=\frac{1}{4} . \\
& F_{2}= \int_{1 / 4}^{3 / 4} 1 \cdot \phi_{2}(x) d x=\frac{1}{2} b h=\frac{1}{4} . \\
& F_{3}= \int_{1 / 2}^{0} 1 \cdot \phi_{3}(x) d x=\frac{1}{2} b h=\frac{1}{4} \\
& K_{11}= \\
& K_{12}=\quad \int_{0}^{1 / 2} c(x) \frac{\partial \phi_{1}}{\partial x} \cdot \frac{\partial v_{1}}{\partial x} d x=\int_{0}^{1 / 4} 1 \cdot 1 \cdot 4 d x+\int_{1 / 4}^{1 / 2} 1 \cdot(-4) \cdot 4 d x=8 . \\
& K_{13}=\quad \int_{0}^{1} c(x) \frac{\partial \phi_{2}}{\partial x} \cdot \frac{\partial v_{2}}{\partial x} d x=\int_{1 / 4}^{1 / 2} 1 \cdot(-4) \cdot 4 d x=-16\left(\frac{1}{4}\right)=-4 . \\
& K_{0}^{1} c(x) \frac{\partial \phi_{1}}{\partial x} \cdot \frac{\partial v_{3}}{\partial x} d x=0 .
\end{aligned}
$$

So $K U=\left[\begin{array}{rrr}8 & -4 & 0 \\ -4 & 8 & -4 \\ 0 & -4 & 8\end{array}\right]\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]=\left[\begin{array}{l}0.25 \\ 0.25 \\ 0.25\end{array}\right]=F$.

Solving yields $u=\left[\begin{array}{c}0.1875 \\ 0.250 \\ 0.1875\end{array}\right]$. This approximation matches $u=x-x^{2}$ at the nodes since when $x=\left[\begin{array}{l}0.25 \\ 0.50 \\ 0.75\end{array}\right], u(x)=\left[\begin{array}{c}0.1875 \\ 0.250 \\ 0.1875\end{array}\right]$, as desired.

Section 3.1, Problem 18: Fixed-free hanging bar $u(1)=0$ is a natural boundary condition. To the N hat functions ϕ_{i} at interior meshpoints, add the half-hat that goes up to $U_{N+1}=1$ at the endpoint $x=1=(N+1) h$. This $\phi_{N+1}=V_{N+1}$ has nonzero slope $\frac{1}{h}$.
a) The N by N stiffness matrix K for $-u_{x x}$ now has an extra row and column. How does the new last row of K_{N+1} represent $u^{\prime}(1)=0$?

$$
\left[\begin{array}{ccccccc}
{\left[\begin{array}{cccccc}
\vdots & & & & & \\
\vdots & & & & & \\
0 & 0 & 0 & 0 & \cdots & -\frac{1}{h} \\
\frac{1}{h}
\end{array}\right]} \\
\\
u_{i-1}+2 u_{i}-u_{i+1}=f_{i} .
\end{array}\right.
$$

For row $n+1,-u_{n}+2 u_{n+1}-u_{n+2}=f_{n+1}$. If $u_{n+2}=u_{n+1}$, then the slope at $(n+1)$ is zero, and so we have $-u_{n}+u_{n+1}=f_{n+1}$.
b) For constant load, find the new last component $F_{N+1}=\int f_{0} V_{N+1} d x$. Solve $K_{N+1} U=F$ and compare U with the true mesh values of $f_{0}\left(x-\frac{1}{2} x^{2}\right)$.

$$
\begin{aligned}
& K_{11}=\int c(x) \frac{\partial \phi_{1}}{\partial x} \cdot \frac{\partial v_{1}}{\partial x} d x=\int_{0}^{1 / 3} 1 \cdot 3 f_{0} \cdot 3 d x+\int_{1 / 3}^{2 / 3} 1 \cdot(-3) \cdot(-3) d x=6 . \\
& K_{12}=K_{21}=\int c(x) \frac{\partial \phi_{1}}{\partial x} \cdot \frac{\partial v_{2}}{\partial x} d x=\int_{1 / 3}^{2 / 3} 1 \cdot(-3) \cdot(3) d x=-3=K_{23}=K_{32} . \\
& K_{13}=K_{31}=0 . \quad K_{33}=3 . \\
& F_{1}=\int_{0}^{1} \phi_{1} f_{0} d x=\frac{1}{2} \frac{2}{3} f_{0}=\frac{1}{3} f_{0} \\
& F_{2}=\int_{0}^{1} \phi_{2} f_{0} d x=\frac{1}{2} \frac{2}{3} f_{0}=\frac{1}{3} f_{0} \\
& F_{3}=\int_{0}^{1} \phi_{3} f_{0} d x=\frac{1}{2} \frac{1}{3} f_{0}=\frac{1}{6} f_{0} \\
& {\left[\begin{array}{rrr}
6 & -3 & 0 \\
-3 & -3 \\
0 & -3 & 3
\end{array}\right]\left[\begin{array}{r}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{l}
f_{0} / 3 \\
f_{0} / 3 \\
f_{0} / 6
\end{array}\right] } \\
& U U=\left[\begin{array}{c}
5 / 18 \\
4 / 9 \\
1 / 2
\end{array}\right] f_{0}
\end{aligned}
$$

Indeed, considering $u=f_{0}\left(x-\frac{1}{2} x^{2}\right)$, we find that the values exactly match up:

$$
\begin{aligned}
x=\frac{1}{3} & \rightarrow \frac{5}{18} f_{0} \\
x=\frac{2}{3} & \rightarrow \frac{4}{9} f_{0} \\
x=1 & \rightarrow \frac{1}{2} f_{0} .
\end{aligned}
$$

