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18.085 - Mathematical Methods for Engineers I    Prof. Gilbert Strang 

Solutions - Problem Set 3 

Section 1.6 
⎥ ⎦ 

1 −1 
1) T = 

−1 2 
⎥ ⎦ ⎥ ⎦ 

uTTu = 
� 

u1 u2 
⎤ 1 −1 u1 

−1 2 u2 
⎥ ⎦ 

� ⎤ u1 − u2
= u1 u2
 −u1 + 2u2 

= u1
2 − u1u2 + (−u1u2 + 2u2

2) 

= u1
2 − 2u1u2 + 2u2

2 

= (u1 − u2)
2 + u2

2 > 0 # 

uTTu is positive definite as it is the sum of 2 squares 
� ⎡ � ⎡ 

1 −1 0 2 −1 −1 
3) A = � 0 1 −1 ⎣ ATA = � −1 2 −1 ⎣ 

−1 0 1 −1 −1 2 

Au = 0 ATAu = 0 

A is a singular matrix as it has only 2 linearly independent columns.

Since A does not have full rank, ATA will have a zero pivot


� ⎡ 
2 −1 −1


ATA = � −1 2 −1 ⎣


−1 −1 2

� ⎡ 

2 −1 −1 
� 0 3/2 −3/2 ⎢ row 2 � row 2 + 1 row 1 = 
� ⎣ 2


0 −3/2 3/2 row 3 � row 3 + 12 row 1

� ⎡ 

2 −1 −1

= � 0 3/2 −3/2 ⎣


0 0
 0 row 3 � row 3 + row 2 

� ATA is only semidefinite # 

Au = 0, ATAu = 0 

The nullvector of A and ATA would be a constant vector 

� ⎡ � ⎡ � ⎡ 
1 −1 0 c 0


� 0 1 −1 ⎣ � c ⎣ = � 0 ⎣


−1 0 1 c 0


� ⎡ � ⎡ � ⎡ 
2 −1 −1 c 0


� −1 2 −1 ⎣ � c ⎣ = � 0 ⎣


−1 −1 2 c 0
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� ⎡ 
c 

� u = � c ⎣ where c is a constant # 

c 

⎥ ⎦ 
1 b 

6) K = 
b 4 

⎥ ⎦ ⎥ ⎦ 

uTKu = 
� 

u1 u2 
⎤ 1 b u1 

b 4 u2 
⎥ ⎦ 

� ⎤ u1 + bu2 = u1 u2 bu1 + 4u2 

= u1
2 + bu1u2 + bu1u2 + 4u2

2 

= u1
2 + 2bu1u2 + 4u2

2 

= (u1 + bu2)
2 + (4 − b2)u2

2 > 0 

4 − b2 > 0 

(b + 2)(b − 2) < 0 

�� �
�

��� 
�

�
� 

�
�

� 

� 
� 

� 

� 
� 

� 

� 
� 

� 

�
�

� 
−2 2 

� � 

−2 < b < 2 # 

For semidefinite case, the borderline value of b is −2 and 2 

uTKu = (u1 + bu2)
2 (only one square) 

⎥ ⎦ 
1 5 

If b = 5, K = 
5 4


By Gaussian Elimination

⎥ ⎦ 

1 5

5 4


⎥ ⎦ 
1 5 

= 
0 −21 row 2 � row 2 − 5 × row 1 

The pivots are 1 and −21 

The matrix is indefinite if b = 5 # 

11) f(x, y) = 2xy 

�f �f 
= 2y = 2x 

�x �y


�2f �2f �2f

= 2 , = 0 , = 0 

�x�y �x2 �y2 
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⎥ ⎦ 
0 2 

Hessian matrix, H = 
2 0 

⎥ ⎦ ⎥ ⎦ 
� ⎤ a b x 

x y � 2xy
b c y 

⎥ ⎦ 
� ⎤ ax + by

= x y 
bx + cy 

= ax2 + bxy + bxy + cy2 

= ax2 + 2bxy + cy2 

By comparing coefficients, a = 0, c = 0

b = 1


⎥ ⎦ 
0 1 

� The symmetric matrix that produces f(x, y) = 2xy is S = 
1 0 

det(S − �I) = 0 
⎥ ⎦ 

−� 1 
det = 0 

1 −� 

�2 − 1 = 0

(� − 1)(� + 1) = 0


� = 1 or −1 

� The eigenvalues for matrix S are −1 and 1 # 

16) Since A is positive definite, A can be diagonalized to 

A = S�S−1 where S = eigenvector 
� = eigenvalues 

AA−1 = I

(S�S−1)A−1 = I


A−1 = S�−1S−1


The eigenvalues � of A are all positives as A is positive definite matrix. 

Therefore the diagonal entries of �−1 (reciprocal of diagonal entries of �) is also positive. 

Hence A−1 is also positive definite # 

Second proof 
⎥ ⎦ 

a b 
A = 

b c 

⎥ ⎦ 
1 c −b 

A−1 = 
ac − b2 −b a 

Since A is positive definite, the upper left determinants are positive 

� a > 0 and ac − b2 > 0 
Also implied that c > 0 so that ac − b2 > 0 
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� � 

� � 

� � 

� � 

� The upper left determinants of A−1 , c and ac − b2, are positive, and we can conclude that 
A−1 is also positive definite # 

19) If � > 0 and K is symmetric, K can be decomposed to 

K = Q�QT 

uTKu = uT(Q�QT)u


= (QTu)T�(QTu) > 0 #(proven) for u = 0∗

� ⎡ 

. . . . . . . . . 
� ⎢ 
� ⎢


Q = �
� x1 x2 . . . xn 

⎢

⎢

� ⎢ 
� ⎣ 

. . . . . . . . .


u = c1x1 + c2x2 + · · · + cnxn


T
The cross term xi xj = 0 for i =∗ j is because the eigenvectors are orthogonal to each other # 

uTKu = (c1x1 + · · · + cnxn)T�u 

= (c1x1 + · · · + cnxn)T(c1�1x1 + · · · + cn�nxn) 

T T T= c1
2�1x1 x1 + · · · + cn 

2�nxn xn > 0 (� � > 0, x x > 0) 

24) 
1 � 

u − K−1f 
�T 

K 
� 
u − K−1f 

� 
− 

1 
fTK−1f 

2 2 

=
1 

uT − 
� 
K−1f 

�T 
[Ku − f ] − 

1 
fTK−1f 

2 2 
1 � �T � �T 1 

= uTKu − uTf − K−1f Ku + K−1f f − fTK−1f 
2 2 

⎥ ⎦ 

=
1 

uTKu − uTf − 
� 
(Ku)T K−1f 

�T 
+ fTK−1T

f − fTK−1f 
2 

=
1 

uTKu − uTf − 
� 
uTKTK−1f 

�T 
+ fT�K��−1f − fT�K��−1f 

2

1 � ⎤


= uTKu − uTf − uTf since KT = K 
2

1


= uTKu − uTf 
2


= P (u) #(verified)


The long term 
1 � 

u − K−1f 
�T 

K 
� 
u − K−1f 

� 
on the right hand side is always positive 

2

except when u = K−1f #


27) H and K are positive definite 
⎥ ⎦ 

H 0 
M = 

0 K


Let H = QH �H Q
T = QK �K Q

T

H , K K 
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⎥ ⎦ ⎥ ⎦ ⎥ ⎦ 
QTQH 0 �H O H 0 

� M = 
QT0 QK 0 �K 0 K 

Since �H and �K are positive as H and K are both positive definite. 

Eigenvalues of M , �M = �H ≡ �K > 0 
� We can conclude that M is positive definite #


Another way to look at the problem is to examine the determinant of upper left matrix

⎥ ⎦ 

H 0 
M = 

0 K 

det(H) > 0 and det(M) = det(H) det(K) > 0 

� M is positive definite 
⎥ ⎦ 

K K 
Now, let’s examine N = 

K K 

Columns of N are not linearly independent, therefore matrix N is singular and will have 0 pivot. 
Therefore N matrix is not positive definite # 

Pivots of M , 

DM = DH ≡ DK # 

Eigenvalues of M , 

�M = �H ≡ �K # 

Pivots of N , 

DN = DK ≡ 0 # 

Eigenvalues of N , 

�N = 2�K ≡ 0 # 

⎥ ⎦ 
chol(H) 0 

chol(M) = 
0 chol(K) 

# 

Section 1.7 

12) “Spectral Radius” 

�(A) = |�max| 
⎥ ⎦ ⎥ ⎦ 

1 1000 1 100 
Let A = B = 

100 1 1000 1 

�(A) = 317.2278 �(B) = 317.2278 

�(A + B) = 1102 �(AB) = 1 × 106 
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� 

�(A) + �(B) = 317.2278 + 317.2278


= 634.4556


�(A + B) = 1102 

� �(A + B) � �(A) + �(B) is false # 

�(A)�(B) = 317.2278 × 317.2278


= 0.1006 × 106


�(AB) = 1.000 × 106 

� �(AB) � �(A) �(B) is false # 

� �(A + B) � �(A) + �(B) 
can be both false # 

�(AB) � �(A) �(B) 

The spectral radius is not acceptable as norm 
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18.085 - Mathematical Methods for Engineers I, Fall 2007 Prof. Gilbert Strang 

Solutions - MATLAB 3 

Observations: 

For the case of d = 1/25, 

It is observed that the large imaginary part of eigenvalue (−1.32 + 10.4782i) for forward difference caused 
the discrete solution to be oscillatory. Correspondingly the singular value of the forward difference method 
is also relatively higher than the center and backward difference method (refer to the variation of singular 
value for d = 1/25 attached). Singular value measure how close the matrix is to singular. The smaller the 
singular value the closer it is to singular. 

From the condition number point of view, the larger the conditional number, the closer the matrix is to 
singular. Pseudo inverse may be required and thus higher round of errors. The condition number is the 
highest for the center difference (2.70e5) as compared to the forward and backward difference (2.96 and 217.7 
respectively). 

For the case of d = 1/100, 

When the d value in the partial differential equation −du �� + u � become smaller and smaller, the second 
order u �� term is as good as non existence. This is the case of singular perturbation where discretization 
near one side of the boundary become not accurate. 

The center difference eigenvalue has the largest imaginary part (2.42 + 10.2958i) and it is observed from 
the plot of u(x) vs x graph, the discrete solution for the center difference is oscillatory. From the variation of 
singular value for d = 1/100 attached, the singular value for center difference is higher than that of forward 
and backward difference methods. 

In addition, the condition number for forward and backward difference are higher than the center difference 
method. 
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d = 1/25 

Eigenvalues 
Center Backward Forward 

−1.3200 + 10.4782i 9.6800 + 5.0131i 37.48 
−1.3200 − 10.4782i 9.6800 − 5.0131i 35.41 
−1.3200 + 9.1869i 9.6800 + 4.3953i 32.15 
−1.3200 − 9.1869i 9.6800 − 4.3953i 27.95 
−1.3200 + 7.1514i 9.6800 + 3.4215i 23.17 
−1.3200 − 7.1514i 9.6800 − 3.4215i 18.19 
−1.3200 + 1.5542i 9.6800 + 0.7436i 3.88 
−1.3200 − 1.5542i 9.6800 − 0.7436i 5.95 
−1.3200 + 4.5365i 9.6800 + 2.1704i 9.21 
−1.3200 − 4.5365i 9.6800 − 2.1704i 13.41 

Singular Value 

Forward Center Backward 
0.51 0 0.01 
0.58 0 0.02 
0.66 0 0.04 
0.75 0 0.08 
0.85 0 0.15 
0.96 0.02 0.28 
1.08 0.06 0.51 
1.21 0.25 0.92 
1.36 0.98 1.6 
1.51 2.99 2.49 

Condition Number 
Forward Center Backward 

2.96 2.70E + 005 217.7 
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d = 1/100 

Eigenvalues 
Forward Center Backward 

−8.5800 + 6.6047i 2.4200 + 10.2958i 20.8 
−8.5800 − 6.6047i 2.4200 − 10.2958i 19.89 
−8.5800 + 5.7908i 2.4200 + 9.0271i 18.45 
−8.5800 − 5.7908i 2.4200 − 9.0271i 16.61 
−8.5800 + 4.5078i 2.4200 + 7.0270i 14.51 
−8.5800 − 4.5078i 2.4200 − 7.0270i 12.33 
−8.5800 + 2.8595i 2.4200 + 1.5271i 6.04 
−8.5800 − 2.8595i 2.4200 − 1.5271i 6.95 
−8.5800 + 0.9796i 2.4200 + 4.4576i 8.39 
−8.5800 − 0.9796i 2.4200 − 4.4576i 10.23 

Singular Value 

Forward Center Backward 
0 0.25 0 
0 0.32 0 
0 0.4 0 

0.01 0.51 0 
0.02 0.64 0.01 
0.06 0.81 0.04 
0.16 1.01 0.12 
0.46 1.25 0.38 
1.27 1.53 1.17 
2.86 1.85 2.91 

Condition Number 
Forward Center Backward 

1.35E + 004 7.53 3.67E + 004 
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d = 1/25


Variation of Singular Values for Forward, Center and Backward Difference
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d = 1/25


Discrete Solution for n = 10
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d = 1/100

Discrete Solution for n = 10
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function conditionNumber(d) 

n = 10;

h = 1/(n+1);


K = toeplitz([2 −1 zeros(1, n−2)]);

K = K � d;

K = K/h�2;


F = diag(−1 � ones(n, 1), 0) + diag(ones(n−1, 1), 1);

F = F/h;


C = diag(ones(n−1, 1), 1) − diag(ones(n−1, 1), −1);

C = C/(2�h);


B = diag(ones(n, 1), 0) + diag(−1�ones(n−1, 1), −1);

B = B/h;


[ForwardV, ForwardE]=eig(K +F )

[CenterV, CenterE]= eig(K +C)

[BackwardV, BackwardE]=eig(K +B)


eig(K +F )

eig(K +C)

eig(K +B)


ForwardSingular =sqrt(eig(ForwardV �� ForwardV))

CenterSingular= sqrt(eig(CenterV �� CenterV))

BackwardSingular = sqrt(eig(BackwardV �� BackwardV))


plot(ForwardSingular, ’--rx’)

hold

plot(CenterSingular)

plot(BackwardSingular, ’--go’)


Forward =max(ForwardSingular)/min(ForwardSingular)

Center = max(CenterSingular)/min(CenterSingular)

Backward = max(BackwardSingular)/min(BackwardSingular)
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