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HOMEWORK 4 
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In this case  
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The “unsolvable equations” are ⎡
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four-vector equal to our b vector. In this case, since the matrix is invertible, there 
is an actual solution to the problem, so the error will be 0. In other words, through 
any 4 points in the plane, there exists a cubic. 

Note: Completely by chance, the problem as given admits a quadratic exact 
solution, so in fact the error for the quadratic fit problem will also be 0. This is 
special, not general. 
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The answer is 9 
10 .
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So the closest line is 9 + 4x.
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The process generates the following matrices step by step: ⎡ 
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c1 + c2 + c4 −c1 −c2 −c4 

−c1 c1 + c3 + c5 −c3 −c5 

−c2 −c3 c2 + c3+c6 −c6 

−c4 −c5 −c6 c4 + c5+c6 
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A diagonal entry of K ∗ K−1 will be 

1 
n−1 1 

n 
2 ∗ (n − 1) + (−1) = 

n 
[2 ∗ n − 2 − (n − 2)] = 1 

i=2 

and an off diagonal entry will be 
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[(n − 1) − 2 + (−1 ∗ (n − 3))] = 0 
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so the product is indeed the identity matrix. 
As we’ve determined the eigenvalues are 1 and n (repeated n−2 times), we know 

all the eigenvalues are positive, so K is positive definite. 
I would also add, since we know the eigenvalues, that the Matrix Tree Theorem 

states that if we take the determinant of the reduced graph laplacian for a connected 
graph we get the total number of spanning trees (connected subgraphs with no loops 
that touch every vertex). The determinant is the product of the eigenvalues, so the 
complete graph on n vertices has nn−2 spanning trees! This is an old theorem of 
Cayley (check this... but I’m pretty sure), proved very neatly. 
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n 9
(1) There are a total of = = 36 possible edges in the graph, 2 2 

of which 12 are included. So there are 24 edges missing, so twice as many 
zeroes in AtA (one for each end of the missing edge). 

(2) It’s main diagonal is the list of degrees, so 

[2 3 2 3 4 3 2 3 2] 

(3) The short answer is because there are four edges incident on the middle 
vertex. 


