MIT OpenCourseWare
http://ocw.mit.edu

18.085 Computational Science and Engineering I

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.085 MATLAB 2.2

This is about $M u^{\prime \prime}+K u=0$ with $M=\left[\begin{array}{llll}1 & 0 & 0 & 4\end{array}\right]$ and $\mathrm{K}=\left[\begin{array}{llll}4 & -4 ;-4 & 16\end{array}\right]$.

1. Find the eigenvalues λ_{1}, λ_{2} and eigenvectors x_{1}, x_{2} of $M^{-1} K$ by eig (K, M) and check that $x_{1}^{\mathrm{T}} M x_{2}=0$. They solve $K x=\lambda M x$.
2. Use the normalmodescode to solve $M u^{\prime \prime}+K u=0$ starting from $u=(1,0)$ and $u^{\prime}=(0,0)$. Find the solution vector u at $t=1$ and $t=2$.
