Exercises on symmetric matrices and positive definiteness

Problem 25.1: (6.4 \#10. Introduction to Linear Algebra: Strang) Here is a quick "proof" that the eigenvalues of all real matrices are real:

False Proof: $A \mathbf{x}=\lambda \mathbf{x}$ gives $\mathbf{x}^{T} A \mathbf{x}=\lambda \mathbf{x}^{T} \mathbf{x}$ so $\lambda=\frac{\mathbf{x}^{T} A \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}$ is real.
There is a hidden assumption in this proof which is not justified. Find the flaw by testing each step on the 90° rotation matrix:

$$
\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]
$$

with $\lambda=i$ and $\mathbf{x}=(i, 1)$.
Problem 25.2: (6.5 \#32.) A group of nonsingular matrices includes $A B$ and A^{-1} if it includes A and B. "Products and inverses stay in the group." Which of these are groups?
a) Positive definite symmetric matrices A.
b) Orthogonal matrices Q.
c) All exponentials $e^{t A}$ of a fixed matrix A.
d) Matrices D with determinant 1 .

MIT OpenCourseWare
http://ocw.mit.edu

18.06SC Linear Algebra

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

