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PROFESSOR: Hey, we're back. Today we're going to do a singular value decomposition question. The

problem is really simple to state: find the singular value decomposition of this matrix C equals

[5, 5; -1, 7]. Hit pause, try it yourself, I'll be back in a minute and we can do it together.

All right, we're back, now let's do it together. Now, I know Professor Strang has done a couple

of these in lecture, but as he pointed out there, it's really easy to make a mistake, so you can

never do enough examples of finding the SVD. So, what does the SVD look like? What do we

want to end up with? Well, we want a decomposition C equals U sigma V transpose.

U and V are going to be orthogonal matrices, that is, their columns are orthonormal sets.

Sigma is going to be a diagonal matrix with non-negative entries. OK, good. So now, how do

we find this decomposition? Well, we need two equations, OK?

One is C transpose C is equal to V, sigma transpose, sigma, V transpose. And you get this just

by plugging in C transpose C here and noticing that U transpose U is 1, since U is an

orthogonal matrix.

Okay. And the second equation is just noticing that V transpose is V inverse, and moving it to

the other side of the equation, which is C*V equals U*sigma. OK, so these are the two

equations we need to use to find V, sigma, and U. OK, so let's start with the first one. Let's

compute C transpose C. So C transpose C is that-- Well, if you compute, we'll get a 26, an 18,

an 18, and a 74, great.

Now, what you notice about this equation is this is just a diagonalization of C transpose C. So

we need to find the eigenvalues-- those will be the entries of sigma transpose sigma-- and the

eigenvectors which will be the columns of a V. Okay, good.

So how do we find those? Well, we look at the determinant of C transpose C minus lambda

times the identity, which is the determinant of 26 minus lambda, 18, 18, and 74-- 74 minus

lambda, thank you. Good, OK, and what is that polynomial?

Well, we get a lambda squared, now the 26 plus 74 is 100, so minus 100*lambda. And I'll let

you do 26 times 74 minus 18 squared on your own, but you'll see you get 1,600, and this

easily factors as lambda minus 20 times lambda minus 80. So the eigenvalues are 20 and 80.

Now what are the eigenvectors? Well, you take C transpose C minus 20 times the identity, and



Now what are the eigenvectors? Well, you take C transpose C minus 20 times the identity, and

you get 6, 18, 18 and 54. To find the eigenvector with eigenvalue 20, we need to find a vector

in the null space of this matrix.

Note that the second column is three times the first column, so our first vector, v_1, we can

just take that to be, well, we could take it to be [-3, 1], but we'd like it to be a unit vector, right?

Remember the columns of v should be unit vectors because they're orthonormal. So 3

squared plus 1 squared is 10, we have to divide by the square root of 10. OK, similarly, we do

C transpose C minus 80 times the identity, we'll get -54, 18; 18, and -6, and similarly we can

find that v_2 will be 1 over square root of 10, 3 over the square root of 10.

Great, OK, so what information do we have now? we have our V matrix, which is just made up

of these two columns, and we actually have our sigma matrix too, because the squares of the

diagonal entries of sigma are 20 and 80. Good, so let's write those down, write down what we

have. So we have V-- I just add these vectors and make them the columns of my matrix.

Square root of 10, 1 over square root of 10; 1 over square root of 10, 3 over square root of 10.

And sigma, this is just the square roots of 20 and 80, which is just 2 root 5 and 4 root 5 along

the diagonal. Squeezing it in here, I hope you all can see these two.

Good, so these are two of the three parts of my singular value decomposition. The last thing I

need to find is u, and for that I need to use this second equation right here. So you need to

multiply C times V, okay so So c is [5, 5; -1, 7], let's multiply it by V, 1 over root 10, 3 over

square root of 10.

What do we get? Well, I'll let you work out the details, but it's not hard here. You get -10 over

root 10, which is just negative square root of 10 here. Then I just get 2 square root of 10, and

then I get-- 1 is 2 square root of 10 and--

I think I made an error here. Give me a second to look through my computation again.

AUDIENCE: [INAUDIBLE]

PROFESSOR: The (2, 1) entry should be-- oh, yes, thank you. The (2, 1) entry should be the square root of

10. Good, yes, that's what I was hoping, yes, because we get-- Yes, I did it in the wrong order,

right, so your recitation instructor should know how to multiply matrices, great, yes, thank you.

You multiply this first, then this, then this, and then this, and if you do it correctly you will get

this matrix here. Good, great.



So now I'd like this to be my U matrix, but it's actually U times sigma, so I need to make these

entries unit length. OK, so I get -1 over root 2, 1 over root 2, 1 over root 2, 1 over root 2, times

my sigma matrix here, which is, remember, 2 square root of 5, 4 square root of 5, and these

constants are just what I needed to divide these columns by in order to make them unit

vectors. So now, here's my U matrix, 1 over square root of 2, -1 over square root of 2; 1 over

square root of 2, 1 over square root of 2, good.

So now I have all three matrices, U, V, and sigma and despite some little errors here and

there, I think this is actually right. You should go check it yourself, because if you're at all like

me, you've screwed up several times by now. But anyway, this is a good illustration of how to

find the singular value decomposition. Recall that you're looking for U sigma V transpose

where u and v are orthogonal matrices, and sigma is diagonal with non-negative entries. And

you find it using these two equations, you compute C transpose C, that's V sigma transpose

sigma times V transpose, and you also have C*V is U*sigma. I hope this was a helpful

illustration.


