Singular value decomposition

The singular value decomposition of a matrix is usually referred to as the SVD. This is the final and best factorization of a matrix:

$$
A=U \Sigma V^{T}
$$

where U is orthogonal, Σ is diagonal, and V is orthogonal.
In the decomoposition $A=U \Sigma V^{T}, A$ can be any matrix. We know that if A is symmetric positive definite its eigenvectors are orthogonal and we can write $A=Q \Lambda Q^{T}$. This is a special case of a SVD, with $U=V=Q$. For more general A, the SVD requires two different matrices U and V.

We've also learned how to write $A=S \Lambda S^{-1}$, where S is the matrix of n distinct eigenvectors of A. However, S may not be orthogonal; the matrices U and V in the SVD will be.

How it works

We can think of A as a linear transformation taking a vector \mathbf{v}_{1} in its row space to a vector $\mathbf{u}_{1}=A \mathbf{v}_{1}$ in its column space. The SVD arises from finding an orthogonal basis for the row space that gets transformed into an orthogonal basis for the column space: $A \mathbf{v}_{i}=\sigma_{i} \mathbf{u}_{i}$.

It's not hard to find an orthogonal basis for the row space - the GramSchmidt process gives us one right away. But in general, there's no reason to expect A to transform that basis to another orthogonal basis.

You may be wondering about the vectors in the nullspaces of A and A^{T}. These are no problem - zeros on the diagonal of Σ will take care of them.

Matrix language

The heart of the problem is to find an orthonormal basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{r}$ for the row space of A for which

$$
\begin{aligned}
A\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{r}
\end{array}\right] & =\left[\begin{array}{lllll}
\sigma_{1} \mathbf{u}_{1} & \sigma_{2} \mathbf{u}_{2} & \cdots & \sigma_{r} \mathbf{u}_{r}
\end{array}\right] \\
& =\left[\begin{array}{llll}
\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{r}
\end{array}\right]\left[\begin{array}{llll}
\sigma_{1} & & & \\
& \sigma_{2} & & \\
& & \ddots & \\
& & & \sigma_{r}
\end{array}\right]
\end{aligned}
$$

with $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots \mathbf{u}_{r}$ an orthonormal basis for the column space of A. Once we add in the nullspaces, this equation will become $A V=U \Sigma$. (We can complete the orthonormal bases $\mathbf{v}_{1}, \ldots \mathbf{v}_{r}$ and $\mathbf{u}_{1}, \ldots \mathbf{u}_{r}$ to orthonormal bases for the entire space any way we want. Since $\mathbf{v}_{r+1}, \ldots \mathbf{v}_{n}$ will be in the nullspace of A, the diagonal entries $\sigma_{r+1}, \ldots \sigma_{n}$ will be 0 .)

The columns of U and V are bases for the row and column spaces, respectively. Usually $U \neq V$, but if A is positive definite we can use the same basis for its row and column space!

Calculation

Suppose A is the invertible matrix $\left[\begin{array}{rr}4 & 4 \\ -3 & 3\end{array}\right]$. We want to find vectors \mathbf{v}_{1} and \mathbf{v}_{2} in the row space $\mathbb{R}^{2}, \mathbf{u}_{1}$ and \mathbf{u}_{2} in the column space \mathbb{R}^{2}, and positive numbers σ_{1} and σ_{2} so that the \mathbf{v}_{i} are orthonormal, the \mathbf{u}_{i} are orthonormal, and the σ_{i} are the scaling factors for which $A \mathbf{v}_{i}=\sigma_{i} u_{i}$.

This is a big step toward finding orthonormal matrices V and U and a diagonal matrix Σ for which:

$$
A V=U \Sigma
$$

Since V is orthogonal, we can multiply both sides by $V^{-1}=V^{T}$ to get:

$$
A=U \Sigma V^{T}
$$

Rather than solving for U, V and Σ simultaneously, we multiply both sides by $A^{T}=V \Sigma^{T} U^{T}$ to get:

$$
\begin{aligned}
A^{T} A & =V \Sigma U^{-1} U \Sigma V^{T} \\
& =V \Sigma^{2} V^{T} \\
& =V\left[\begin{array}{llll}
\sigma_{1}^{2} & & & \\
& \sigma_{2}^{2} & & \\
& & \ddots & \\
& & & \sigma_{n}^{2}
\end{array}\right] V^{T}
\end{aligned}
$$

This is in the form $Q \Lambda Q^{T}$; we can now find V by diagonalizing the symmetric positive definite (or semidefinite) matrix $A^{T} A$. The columns of V are eigenvectors of $A^{T} A$ and the eigenvalues of $A^{T} A$ are the values σ_{i}^{2}. (We choose σ_{i} to be the positive square root of λ_{i}.)

To find U, we do the same thing with $A A^{T}$.

SVD example

We return to our matrix $A=\left[\begin{array}{rr}4 & 4 \\ -3 & 3\end{array}\right]$. We start by computing

$$
\begin{aligned}
A^{T} A & =\left[\begin{array}{rr}
4 & -3 \\
4 & 3
\end{array}\right]\left[\begin{array}{rr}
4 & 4 \\
-3 & 3
\end{array}\right] \\
& =\left[\begin{array}{rr}
25 & 7 \\
7 & 25
\end{array}\right] .
\end{aligned}
$$

The eigenvectors of this matrix will give us the vectors \mathbf{v}_{i}, and the eigenvalues will gives us the numbers σ_{i}.

Two orthogonal eigenvectors of $A^{T} A$ are $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{r}1 \\ -1\end{array}\right]$. To get an orthonormal basis, let $\mathbf{v}_{1}=\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{r}1 / \sqrt{2} \\ -1 / \sqrt{2}\end{array}\right]$. These have eigenvalues $\sigma_{1}^{2}=32$ and $\sigma_{2}^{2}=18$. We now have:

$$
\left.\left.\left[\begin{array}{cc}
A \\
4 & 4 \\
-3 & 3
\end{array}\right]=\left[\begin{array}{c}
U \\
\end{array}\right] \stackrel{\Sigma}{4 \sqrt{2}} \begin{array}{c}
0 \\
0
\end{array}\right] \sqrt{2}\right]\left[\begin{array}{cr}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right] .
$$

We could solve this for U, but for practice we'll find U by finding orthonormal eigenvectors \mathbf{u}_{1} and \mathbf{u}_{2} for $A A^{T}=U \Sigma^{2} U^{T}$.

$$
\begin{aligned}
A A^{T} & =\left[\begin{array}{rr}
4 & 4 \\
-3 & 3
\end{array}\right]\left[\begin{array}{rr}
4 & -3 \\
4 & 3
\end{array}\right] \\
& =\left[\begin{array}{rr}
32 & 0 \\
0 & 18
\end{array}\right] .
\end{aligned}
$$

Luckily, $A A^{T}$ happens to be diagonal. It's tempting to let $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\mathbf{u}_{2}=$ $\left[\begin{array}{l}0 \\ 1\end{array}\right]$, as Professor Strang did in the lecture, but because $A \mathbf{v}_{2}=\left[\begin{array}{r}0 \\ -3 \sqrt{2}\end{array}\right]$ we instead have $\mathbf{u}_{2}=\left[\begin{array}{r}0 \\ -1\end{array}\right]$ and $U=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$. Note that this also gives us a chance to double check our calculation of σ_{1} and σ_{2}.

Thus, the SVD of A is:

$$
\left.\begin{array}{c}
A \\
\left.\left[\begin{array}{cc}
4 & 4 \\
-3 & 3
\end{array}\right]=\left[\begin{array}{cr}
1 & 0 \\
0 & -1
\end{array}\right] \quad\right]
\end{array}\right] .
$$

Example with a nullspace

Now let $A=\left[\begin{array}{ll}4 & 3 \\ 8 & 6\end{array}\right]$. This has a one dimensional nullspace and one dimensional row and column spaces.

The row space of A consists of the multiples of $\left[\begin{array}{l}4 \\ 3\end{array}\right]$. The column space of A is made up of multiples of $\left[\begin{array}{l}4 \\ 8\end{array}\right]$. The nullspace and left nullspace are perpendicular to the row and column spaces, respectively.

Unit basis vectors of the row and column spaces are $\mathbf{v}_{1}=\left[\begin{array}{l}.8 \\ .6\end{array}\right]$ and $\mathbf{u}_{1}=$
$\left[\begin{array}{l}1 / \sqrt{5} \\ 2 / \sqrt{5}\end{array}\right]$. To compute σ_{1} we find the nonzero eigenvalue of $A^{T} A$.

$$
\begin{aligned}
A^{T} A & =\left[\begin{array}{ll}
4 & 8 \\
3 & 6
\end{array}\right]\left[\begin{array}{ll}
4 & 3 \\
8 & 6
\end{array}\right] \\
& =\left[\begin{array}{ll}
80 & 60 \\
60 & 45
\end{array}\right]
\end{aligned}
$$

Because this is a rank 1 matrix, one eigenvalue must be 0 . The other must equal the trace, so $\sigma_{1}^{2}=125$. After finding unit vectors perpendicular to \mathbf{u}_{1} and \mathbf{v}_{1} (basis vectors for the left nullspace and nullspace, respectively) we see that the SVD of A is:
$\left[\begin{array}{rr}4 & 3 \\ 8 & 6\end{array}\right]=\frac{1}{\sqrt{5}}\left[\begin{array}{rr}1 & 2 \\ 2 & -1\end{array}\right]$
A
U
$\left[\begin{array}{rr}\sqrt{125} & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{rr}.8 & .6 \\ .6 & -.8\end{array}\right]$.
Σ
V^{T}

The singular value decomposition combines topics in linear algebra ranging from positive definite matrices to the four fundamental subspaces.
$\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{r}$ is an orthonormal basis for the row space.
$\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots \mathbf{u}_{r} \quad$ is an orthonormal basis for the column space.
$\mathbf{v}_{r+1}, \ldots \mathbf{v}_{n} \quad$ is an orthonormal basis for the nullspace.
$\mathbf{u}_{r+1}, \ldots \mathbf{u}_{m}$ is an orthonormal basis for the left nullspace.
These are the "right" bases to use, because $A \mathbf{v}_{i}=\sigma_{i} \mathbf{u}_{i}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.06SC Linear Algebra

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

