
� � � �

� �

� � � � � �

 Complex matrices; fast Fourier transform

Matrices with all real entries can have complex eigenvalues! So we can’t avoid
working with complex numbers. In this lecture we learn to work with complex
vectors and matrices.

The most important complex matrix is the Fourier matrix Fn, which is used
for Fourier transforms. Normally, multiplication by Fn would require n2 mul
tiplications. The fast Fourier transform (FFT) reduces this to roughly n log2 n
multiplications, a revolutionary improvement.

Complex vectors

Length ⎤⎡
z1
z2

=

length? Our old definition:

⎢⎢⎣
⎥⎥⎦Given a vector z ∈ Cn with complex entries, how do we find its . . .

zn

⎤⎡ ⎢⎢⎣

z1
z2

. . .
zn

⎥⎥⎦zT z = [z1 z2 zn]· · ·

is no good; this quantity isn’t always positive. For example:

1 i 1
= 0.

to be 0. The correct definition is:

i

1We don’t want to define the length of i
|z|2 = zT z = |z1|2 + |z2|2 + · · · + |zn|2. Then we have:

length
��21 11 −i = 2.=
i i

To simplify our notation we write |z|2 = zH z, where zH = zT . The H comes
from the name Hermite, and zH z is read “z Hermitian z”.

Inner product

Similarly, the inner or dot product of two complex vectors is not just yTx. We
must also take the complex conjugate of y:

H Ty x = y x = y1x1 + y2x2 + + y xn.· · · n

1

� �

�

Complex matrices

Hermitian matrices

Symmetric matrices are real valued matrices for which AT = A. If A is com-
Tplex, a nicer property is A = A; such a matrix is called Hermitian and we

abbreviate AT as AH . Note that the diagonal entries of a Hermitian matrix
must be real. For example,

T 2 3 + iA = A = .3 − i 5

Similar to symmetric matrices, Hermitian matrices have real eigenvalues and
perpendicular eigenvectors.

Unitary matrices

What does it mean for complex vectors q1, q2, ..., qn to be perpendicular (or
orthonormal)? We must use our new definition of the inner product. For a
collection of qj in complex space to be orthonormal, we require:

qjqk =
0
1

j �= k
j = k � �

, and then QHQ =
 I. Just as We can again define Q = q1 q2 qn· · ·
“Hermitian” is the complex equivalent of “symmetric”, the term “unitary” is
analogous to “orthogonal”. A unitary matrix is a square matrix with perpen
dicular columns of unit length.

Discrete Fourier transform

A Fourier series is a way of writing a periodic function or signal as a sum of
functions of different frequencies:

f (x) = a0 + a1 cos x + b1 sin x + a2 cos 2x + b2 sin 2x + .· · ·

When working with finite data sets, the discrete Fourier transform is the key to
this decomposition.

In electrical engineering and computer science, the rows and columns of a
matrix are numbered starting with 0, not 1 (and ending with n −
follow this convention when discussing the Fourier matrix: ⎡ 1 1 1 · · · 1 ⎢ 1 w w2 wn−1

⎢⎢⎢ 1 w2
F w4 w2(n−1)

n

⎤
 =

⎥⎥⎢ ⎥⎥⎥ . ⎣ . .

1 wn−1 w2(n−1 2) · · · w(n−1)

⎦
2

 1, not n). We’ll

Notice that Fn = FT and (Fn)jk = wjk, where j, k = 0, 1, ..., n − 1 and the comn

plex number w is w = ei·2π/n (so wn = 1). The columns of this matrix are
orthogonal.

All the entries of Fn are on the unit circle in the complex plane, and rais
ing each one to the nth power gives 1. We could write w = cos(2π/n) +
i sin(2π/n), but that would just make it harder to compute wjk.

Because w4 = 1 and w = e2πi/4 = i, our best example of a Fourier matrix is: ⎡ ⎤⎡⎤
1 1 1 1 1 1 1 1
1 i i2 i3⎢⎢⎣

⎥⎥⎦ =

⎢⎢⎣

⎥⎥⎦1 i −1 −i
1 −1F4 = .i2 i4 i6 1 −1

−i
1

i3 i6 i9 1 −1 i1

To find the Fourier transform of a vector with four components (four data
points) we multiply by F4.

It’s easy to check that the columns of F4 are orthogonal, as long as we re
member to conjugate when computing the inner product. However, F4 is not
quite unitary because each column has length 2. We could divide each entry
by 2 to get a matrix whose columns are orthonormal:

1
F4

H F4 = I.
4

An example

The signal corresponding to a single impulse at time zero is (roughly) described ⎤
1
0

⎡

0
0

⎢⎣
⎥⎦by . To find the Fourier transform of this signal we compute:

⎤⎡⎤⎡⎤⎡
1 1 1 1 1 1 ⎢⎢⎣

⎢⎢⎣
⎥⎥⎦

⎥⎥⎦
⎢⎢⎣

⎥⎥⎦1 i −1 −i
1

0 1
=
 .1 −1

−i
−1

−1 i 0 1
0 1

1

A single impulse has all frequencies in equal amounts.

If we multiply by F4 again we almost get back to (1, 0, 0, 0):
⎤⎡⎤⎡⎤⎡⎤⎡

1 1 1 1 1 4 1 ⎢⎢⎣
⎢⎢⎣

⎥⎥⎦
1
1

⎥⎥⎦ =

⎢⎢⎣

0
0

⎥⎥⎦ = 4
⎢⎢⎣

0
0

⎥⎥⎦1 i −1 −i
1 −1 .1 −1

−i1 −1 i 1 0 0

Because √1
n

Fn is unitary, multiplying by Fn and dividing by the scalar n inverts
the transform.

3

� �

Fast Fourier transform

Fourier matrices can be broken down into chunks with lots of zero entries;
Fourier probably didn’t notice this. Gauss did, but didn’t realize how signifi
cant a discovery this was.

There’s a nice relationship between Fn and F2n related to the fact that w2
2

n =
wn: � �

I D Fn 0F2n P,= I −D 0 Fn

where D is a diagonal matrix and P is a 2n by 2n permutation matrix: ⎤⎡
1 0 0 0 0 0· · ·
0 0 1 0 0 0· · ·

. . .
0 0 0 0 1 0P =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.· · ·
0 1 0 0 · · · 0 0
0 0 0 1 · · · 0 0

. . .
0 0 0 0 · · · 0 1

So, a 2n sized Fourier transform F times x which we might think would require
(2n)2 = 4n2 operations can instead be performed using two size n Fourier
transforms (2n2 operations) plus two very simple matrix multiplications which
require on the order of n multiplications. The matrix P picks out the even com
ponents x0, x2, x4, ... of a vector first, and then the odd ones – this calculation
can be done very quickly.

Thus we can do a Fourier transform of size 64 on a vector by separating
the vector into its odd and even components, performing a size 32 Fourier
transform on each half of its components, then recombining the two halves
through a process which involves multiplication by the diagonal matrix D. ⎡ ⎤

1
w

w2
⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎦
D = .

. . .
wn−1

Of course we can break each of those copies of F32 down into two copies of
F16, and so on. In the end, instead of using n2 operations to multiply by Fn we
get the same result using about 1

2 n log2 n operations.
A typical case is n = 1024 = 210. Simply multiplying by Fn requires over

a million calculations. The fast Fourier transform can be completed with only

2 n log2 n = 5 1024 calculations. This is 200 times faster! ·
This is only possible because Fourier matrices are special matrices with or

thogonal columns. In the next lecture we’ll return to dealing exclusively with
real numbers and will learn about positive definite matrices, which are the ma
trices most often seen in applications.

4

1

MIT OpenCourseWare
http://ocw.mit.edu

18.06SC Linear Algebra
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

