Projections onto subspaces

Projections

If we have a vector \mathbf{b} and a line determined by a vector \mathbf{a}, how do we find the point on the line that is closest to \mathbf{b} ?

Figure 1: The point closest to \mathbf{b} on the line determined by \mathbf{a}.
We can see from Figure 1 that this closest point \mathbf{p} is at the intersection formed by a line through \mathbf{b} that is orthogonal to \mathbf{a}. If we think of \mathbf{p} as an approximation of \mathbf{b}, then the length of $\mathbf{e}=\mathbf{b}-\mathbf{p}$ is the error in that approximation.

We could try to find \mathbf{p} using trigonometry or calculus, but it's easier to use linear algebra. Since \mathbf{p} lies on the line through \mathbf{a}, we know $\mathbf{p}=x$ for some number x. We also know that \mathbf{a} is perpendicular to $\mathbf{e}=\mathbf{b}-\mathbf{x a}$:

$$
\begin{aligned}
\mathbf{a}^{T}(\mathbf{b}-x \mathbf{a}) & =0 \\
x \mathbf{a}^{T} \mathbf{a} & =\mathbf{a}^{T} \mathbf{b} \\
x & =\frac{\mathbf{a}^{T} \mathbf{b}}{\mathbf{a}^{T} \mathbf{a}}
\end{aligned}
$$

and $\mathbf{p}=\mathbf{a} x=\mathbf{a} \frac{\mathbf{a}^{T} \mathbf{b}}{\mathbf{a}^{T} \mathbf{a}}$. Doubling \mathbf{b} doubles \mathbf{p}. Doubling a does not affect \mathbf{p}.

Projection matrix

We'd like to write this projection in terms of a projection matrix $P: \mathbf{p}=P \mathbf{b}$.

$$
\mathbf{p}=\mathbf{x a}=\frac{\mathbf{\mathbf { a a } ^ { T }} \mathbf{a}}{\mathbf{a}^{T} \mathbf{a}}
$$

so the matrix is:

$$
P=\frac{\mathbf{a a}^{T}}{\mathbf{a}^{T} \mathbf{a}}
$$

Note that $\mathbf{a a}^{T}$ is a three by three matrix, not a number; matrix multiplication is not commutative.

The column space of P is spanned by a because for any $\mathbf{b}, P \mathbf{b}$ lies on the line determined by \mathbf{a}. The rank of P is $1 . P$ is symmetric. $P^{2} \mathbf{b}=P \mathbf{b}$ because
the projection of a vector already on the line through a is just that vector. In general, projection matrices have the properties:

$$
P^{T}=P \quad \text { and } \quad P^{2}=P
$$

Why project?

As we know, the equation $A \mathbf{x}=\mathbf{b}$ may have no solution. The vector $A \mathbf{x}$ is always in the column space of A, and \mathbf{b} is unlikely to be in the column space. So, we project \mathbf{b} onto a vector \mathbf{p} in the column space of A and solve $A \hat{\mathbf{x}}=\mathbf{p}$.

Projection in higher dimensions

In \mathbb{R}^{3}, how do we project a vector \mathbf{b} onto the closest point \mathbf{p} in a plane?
If \mathbf{a}_{1} and \mathbf{a}_{2} form a basis for the plane, then that plane is the column space of the matrix $A=\left[\begin{array}{ll}\mathbf{a}_{1} & \mathbf{a}_{2}\end{array}\right]$.

We know that $\mathbf{p}=\hat{x}_{1} \mathbf{a}_{1}+\hat{x}_{2} \mathbf{a}_{2}=A \hat{\mathbf{x}}$. We want to find $\hat{\mathbf{x}}$. There are many ways to show that $\mathbf{e}=\mathbf{b}-\mathbf{p}=\mathbf{b}-A \hat{\mathbf{x}}$ is orthogonal to the plane we're projecting onto, after which we can use the fact that \mathbf{e} is perpendicular to \mathbf{a}_{1} and \mathbf{a}_{2} :

$$
\mathbf{a}_{1}^{T}(\mathbf{b}-A \hat{\mathbf{x}})=0 \quad \text { and } \quad \mathbf{a}_{2}^{T}(\mathbf{b}-A \hat{\mathbf{x}})=0
$$

In matrix form, $A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=\mathbf{0}$. When we were projecting onto a line, A only had one column and so this equation looked like: $a^{T}(\mathbf{b}-x \mathbf{a})=\mathbf{0}$.

Note that $\mathbf{e}=\mathbf{b}-A \hat{\mathbf{x}}$ is in the nullspace of A^{T} and so is in the left nullspace of A. We know that everything in the left nullspace of A is perpendicular to the column space of A, so this is another confirmation that our calculations are correct.

We can rewrite the equation $A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=\mathbf{0}$ as:

$$
A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}
$$

When projecting onto a line, $A^{T} A$ was just a number; now it is a square matrix. So instead of dividing by \mathbf{a}^{T} a we now have to multiply by $\left(A^{T} A\right)^{-1}$

In n dimensions,

$$
\begin{aligned}
\hat{\mathbf{x}} & =\left(A^{T} A\right)^{-1} A^{T} \mathbf{b} \\
\mathbf{p}=A \hat{\mathbf{x}} & =A\left(A^{T} A\right)^{-1} A^{T} \mathbf{b} \\
P & =A\left(A^{T} A\right)^{-1} A^{T}
\end{aligned}
$$

It's tempting to try to simplify these expressions, but if A isn't a square matrix we can't say that $\left(A^{T} A\right)^{-1}=A^{-1}\left(A^{T}\right)^{-1}$. If A does happen to be a square, invertible matrix then its column space is the whole space and contains b. In this case P is the identity, as we find when we simplify. It is still true that:

$$
P^{T}=P \quad \text { and } \quad P^{2}=P .
$$

Figure 2: Three points and a line close to them.

Least Squares

Suppose we're given a collection of data points (t, b) :

$$
\{(1,1),(2,2),(3,2)\}
$$

and we want to find the closest line $b=C+D t$ to that collection. If the line went through all three points, we'd have:

$$
\begin{aligned}
C+D & =1 \\
C+2 D & =2 \\
C+3 D & =2
\end{aligned}
$$

which is equivalent to:

$$
\underset{A}{\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right]} \underset{\mathbf{x}}{\left[\begin{array}{l}
C \\
D
\end{array}\right]}=\underset{\mathbf{b}}{\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]} .
$$

In our example the line does not go through all three points, so this equation is not solvable. Instead we'll solve:

$$
A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.06SC Linear Algebra

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

