
  Projection matrices and least squares 

Projections 

Last lecture, we learned that P = A(AT A)−1 AT is the matrix that projects a 
vector b onto the space spanned by the columns of A. If b is perpendicular to 
the column space, then it’s in the left nullspace N(AT ) of A and Pb = 0. If b is 
in the column space then b = Ax for some x, and Pb = b. 

A typical vector will have a component p in the column space and a compo
nent e perpendicular to the column space (in the left nullspace); its projection 
is just the component in the column space. 

The matrix projecting b onto N(AT) is I − P: 

e = b − p 

e = (I − P)b. 

Naturally, I − P has all the properties of a projection matrix. 

Least squares 

−1 0 1 2 3 4
x

0

1

2

y

Figure 1: Three points and a line close to them. 

We want to find the closest line b = C + Dt to the points (1, 1), (2, 2), and 
(3, 2). The process we’re going to use is called linear regression; this technique 
is most useful if none of the data points are outliers. 

By “closest” line we mean one that minimizes the error represented by the 
distance from the points to the line. We measure that error by adding up the 
squares of these distances. In other words, we want to minimize Ax − b 2 = 

2 
|| ||

||e|| . 
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If the line went through all three points, we’d have: 

C + D = 1 
C + 2D = 2 
C + 3D = 2, 

but this system is unsolvable. It’s equivalent to Ax = b, where: ⎡ ⎤ ⎡ ⎤ 
1 1 � � 1 

A = ⎣ 1 2 ⎦ , x = 
C and b = ⎣ 2 ⎦ .D1 3 2 

There are two ways of viewing this. In the space of the line we’re trying to 
find, e1, e2 and e3 are the vertical distances from the data points to the line. The 
components p1, p2 and p3 are the values of C + Dt near each data point; p ≈ b. 

In the other view we have a vector b in R3, its projection p onto the column 
space of A, and its projection e onto N(AT ). 

ĈWe will now find x̂ = ˆ and p. We know: 
D 

AT Ax̂ = ATb� � � � � � 
3 6 Ĉ 5 
6 14 D̂

= 11 . 

From this we get the normal equations: 

3Ĉ + 6D̂ = 5

6Ĉ + 14D̂ = 11.


We solve these to find D̂ = 1/2 and Ĉ = 2/3. 
We could also have used calculus to find the minimum of the following 

function of two variables: 

e2
1 + e2

2 + e3
2 = (C + D − 1)2 + (C + 2D − 2)2 + (C + 3D − 2)2. 

Either way, we end up solving a system of linear equations to find that the 
closest line to our points is b = 2

3 + 1
2 t. 

This gives us: 

i pi ei 
1 7/6 −1/6 
2 5/3 1/3 
3 13/6 −1/6 

7/6 −1/6 
or p = 5/3 and e = 2/6 . Note that p and e are orthogonal, and 

13/6 −1/6 
also that e is perpendicular to the columns of A. 
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The matrix AT A 

We’ve been assuming that the matrix AT A is invertible. Is this justified? 
If A has independent columns, then AT A is invertible. 
To prove this we assume that AT Ax = 0, then show that it must be true that 

x = 0: 

AT Ax = 0 

xT AT Ax = xT0 

(Ax)T (Ax) = 0 

Ax = 0. 

Since A has independent columns, Ax = 0 only when x = 0. 
As long as the columns of A are independent, we can use linear regression 

to find approximate solutions to unsolvable systems of linear equations. The 
columns of A are guaranteed to be independent if they are orthonormal, i.e. ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 

1 0 0 
if they are perpendicular unit vectors like ⎣ 0 ⎦, ⎣ 1 ⎦ and ⎣ 0 ⎦, or like � � � � 0 0 1 

cos θ 
sin θ 

and − sin θ 
cos θ 

. 
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