Exercises on projection matrices and least squares

Problem 16.1: (4.3 #17. *Introduction to Linear Algebra:* Strang) Write down three equations for the line b = C + Dt to go through b = 7 at t = -1, b = 7 at t = 1, and b = 21 at t = 2. Find the least squares solution $\hat{\mathbf{x}} = (C, D)$ and draw the closest line.

Solution: $\begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 7 \\ 7 \\ 21 \end{bmatrix}$. The solution $\hat{\mathbf{x}} = \begin{bmatrix} 9 \\ 4 \end{bmatrix}$ comes from $\begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 35 \\ 42 \end{bmatrix}$.

Problem 16.2: (4.3 #18.) Find the projection $\mathbf{p} = A\hat{\mathbf{x}}$ in the previous problem. This gives the three heights of the closest line. Show that the error vector is $\mathbf{e} = (2, -6, 4)$. Why is $P\mathbf{e} = \mathbf{0}$?

Solution: $\mathbf{p} = A\hat{\mathbf{x}} = (5, 13, 17)$ gives the heights of the closest line. The error is $\mathbf{b} - \mathbf{p} = (2, -6, 4)$. This error \mathbf{e} has $P\mathbf{e} = P\mathbf{b} - P\mathbf{p} = \mathbf{p} - \mathbf{p} = \mathbf{0}$.

Problem 16.3: (4.3 #19.) Suppose the measurements at t = -1, 1, 2 are the errors 2, -6, 4 in the previous problem. Compute $\hat{\mathbf{x}}$ and the closest line to these new measurements. Explain the answer: $\mathbf{b} = (2, -6, 4)$ is perpendicular to ______ so the projection is $\mathbf{p} = \mathbf{0}$.

Solution: If $\mathbf{b} = \text{error } \mathbf{e}$ then \mathbf{b} is perpendicular to the column space of A. Projection $\mathbf{p} = \mathbf{0}$.

Problem 16.4: (4.3 #20.) Suppose the measurements at t = -1, 1, 2 are **b** = (5, 13, 17). Compute $\hat{\mathbf{x}}$ and the closest line and **e**. The error is **e** = **0** because this **b** is _____.

Solution: If $\mathbf{b} = A\hat{\mathbf{x}} = (5, 13, 17)$ then $\hat{\mathbf{x}} = (9, 4)$ and $\mathbf{e} = \mathbf{0}$ since \mathbf{b} is *in the column space of A*.

Problem 16.5: (4.3 #21.) Which of the four subspaces contains the error vector **e**? Which contains **p**? Which contains $\hat{\mathbf{x}}$? What is the nullspace of *A*?

Solution: e is in $\mathbf{N}(A^T)$; **p** is in $\mathbf{C}(A)$; **\hat{\mathbf{x}}** is in $\mathbf{C}(A^T)$; $\mathbf{N}(A) = \{\mathbf{0}\} = \text{zero}$ vector only.

Problem 16.6: (4.3 #22.) Find the best line C + Dt to fit b = 4, 2, -1, 0, 0 at times t = -2, -1, 0, 1, 2.

Solution: The least squares equation is $\begin{bmatrix} 5 & \mathbf{0} \\ \mathbf{0} & 10 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 5 \\ -10 \end{bmatrix}$. Solution: C = 1, D = -1. Line 1 - t. Symmetric t's \Rightarrow diagonal $A^T A$ MIT OpenCourseWare http://ocw.mit.edu

18.06SC Linear Algebra Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.