Exercises on projection matrices and least squares

Problem 16.1: (4.3 \#17. Introduction to Linear Algebra: Strang) Write down three equations for the line $b=C+D t$ to go through $b=7$ at $t=-1$, $b=7$ at $t=1$, and $b=21$ at $t=2$. Find the least squares solution $\hat{\mathbf{x}}=(C, D)$ and draw the closest line.

Problem 16.2: (4.3 \#18.) Find the projection $\mathbf{p}=A \hat{\mathbf{x}}$ in the previous problem. This gives the three heights of the closest line. Show that the error vector is $\mathbf{e}=(2,-6,4)$. Why is $P \mathbf{e}=\mathbf{0}$?

Problem 16.3: (4.3 \#19.) Suppose the measurements at $t=-1,1,2$ are the errors $2,-6,4$ in the previous problem. Compute $\hat{\mathbf{x}}$ and the closest line to these new measurements. Explain the answer: $\mathbf{b}=(2,-6,4)$ is perpendicular to \qquad so the projection is $\mathbf{p}=\mathbf{0}$.

Problem 16.4: (4.3 \#20.) Suppose the measurements at $t=-1,1,2$ are $\mathbf{b}=(5,13,17)$. Compute $\hat{\mathbf{x}}$ and the closest line and \mathbf{e}. The error is $\mathbf{e}=\mathbf{0}$ because this \mathbf{b} is \qquad
Problem 16.5: (4.3 \#21.) Which of the four subspaces contains the error vector \mathbf{e} ? Which contains \mathbf{p} ? Which contains $\hat{\mathbf{x}}$? What is the nullspace of A?

Problem 16.6: (4.3 \#22.) Find the best line $C+D t$ to fit $b=4,2,-1,0,0$ at times $t=-2,-1,0,1,2$.

MIT OpenCourseWare
http://ocw.mit.edu

18.06SC Linear Algebra
 Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

