Exercises on projection matrices and least squares

Problem 16.1: (4.3 #17. *Introduction to Linear Algebra:* Strang) Write down three equations for the line b = C + Dt to go through b = 7 at t = -1, b = 7 at t = 1, and b = 21 at t = 2. Find the least squares solution $\hat{\mathbf{x}} = (C, D)$ and draw the closest line.

Problem 16.2: (4.3 #18.) Find the projection $\mathbf{p} = A\hat{\mathbf{x}}$ in the previous problem. This gives the three heights of the closest line. Show that the error vector is $\mathbf{e} = (2, -6, 4)$. Why is $P\mathbf{e} = \mathbf{0}$?

Problem 16.3: (4.3 #19.) Suppose the measurements at t = -1, 1, 2 are the errors 2, -6, 4 in the previous problem. Compute $\hat{\mathbf{x}}$ and the closest line to these new measurements. Explain the answer: $\mathbf{b} = (2, -6, 4)$ is perpendicular to ______ so the projection is $\mathbf{p} = \mathbf{0}$.

Problem 16.4: (4.3 #20.) Suppose the measurements at t = -1, 1, 2 are $\mathbf{b} = (5, 13, 17)$. Compute $\hat{\mathbf{x}}$ and the closest line and \mathbf{e} . The error is $\mathbf{e} = \mathbf{0}$ because this \mathbf{b} is ______.

Problem 16.5: (4.3 #21.) Which of the four subspaces contains the error vector \mathbf{e} ? Which contains \mathbf{p} ? Which contains $\hat{\mathbf{x}}$? What is the nullspace of A?

Problem 16.6: (4.3 #22.) Find the best line C + Dt to fit b = 4, 2, -1, 0, 0 at times t = -2, -1, 0, 1, 2.

MIT OpenCourseWare http://ocw.mit.edu

18.06SC Linear Algebra Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.