Orthogonal matrices and Gram-Schmidt

In this lecture we finish introducing orthogonality. Using an orthonormal basis or a matrix with orthonormal columns makes calculations much easier. The Gram-Schmidt process starts with any basis and produces an orthonormal basis that spans the same space as the original basis.

Orthonormal vectors

The vectors $\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots \mathbf{q}_{n}$ are orthonormal if:

$$
\mathbf{q}_{i}^{T} \mathbf{q}_{j}= \begin{cases}0 & \text { if } i \neq j \\ 1 & \text { if } i=j\end{cases}
$$

In other words, they all have (normal) length 1 and are perpendicular (ortho) to each other. Orthonormal vectors are always independent.

Orthonormal matrix

If the columns of $Q=\left[\begin{array}{lll}\mathbf{q}_{1} & \ldots & \mathbf{q}_{n}\end{array}\right]$ are orthonormal, then $Q^{T} Q=I$ is the identity.

Matrices with orthonormal columns are a new class of important matrices to add to those on our list: triangular, diagonal, permutation, symmetric, reduced row echelon, and projection matrices. We'll call them "orthonormal matrices".

A square orthonormal matrix Q is called an orthogonal matrix. If Q is square, then $Q^{T} Q=I$ tells us that $Q^{T}=Q^{-1}$.

For example, if $Q=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ then $Q^{T}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$. Both Q and Q^{T} are orthogonal matrices, and their product is the identity.

The matrix $Q=\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ is orthogonal. The matrix $\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$ is not, but we can adjust that matrix to get the orthogonal matrix $Q=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$. We can use the same tactic to find some larger orthogonal matrices called Hadamard matrices:

$$
Q=\frac{1}{2}\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

An example of a rectangular matrix with orthonormal columns is:

$$
Q=\frac{1}{3}\left[\begin{array}{rr}
1 & -2 \\
2 & -1 \\
2 & 2
\end{array}\right]
$$

We can extend this to a (square) orthogonal matrix:

$$
\frac{1}{3}\left[\begin{array}{rrr}
1 & -2 & 2 \\
2 & -1 & -2 \\
2 & 2 & 1
\end{array}\right]
$$

These examples are particularly nice because they don't include complicated square roots.

Orthonormal columns are good

Suppose Q has orthonormal columns. The matrix that projects onto the column space of Q is:

$$
P=Q^{T}\left(Q^{T} Q\right)^{-1} Q^{T}
$$

If the columns of Q are orthonormal, then $Q^{T} Q=I$ and $P=Q Q^{T}$. If Q is square, then $P=I$ because the columns of Q span the entire space.

Many equations become trivial when using a matrix with orthonormal columns. If our basis is orthonormal, the projection component \hat{x}_{i} is just $\mathbf{q}_{i}^{T} \mathbf{b}$ because $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$ becomes $\hat{\mathbf{x}}=Q^{T} \mathbf{b}$.

Gram-Schmidt

With elimination, our goal was "make the matrix triangular". Now our goal is "make the matrix orthonormal".

We start with two independent vectors \mathbf{a} and \mathbf{b} and want to find orthonormal vectors \mathbf{q}_{1} and \mathbf{q}_{2} that span the same plane. We start by finding orthogonal vectors \mathbf{A} and \mathbf{B} that span the same space as \mathbf{a} and \mathbf{b}. Then the unit vectors $\mathbf{q}_{1}=\frac{\mathbf{A}}{\|\mathbf{A}\|}$ and $\mathbf{q}_{2}=\frac{\mathbf{B}}{\|\mathbf{B}\|}$ form the desired orthonormal basis.

Let $\mathbf{A}=\mathbf{a}$. We get a vector orthogonal to \mathbf{A} in the space spanned by \mathbf{a} and \mathbf{b} by projecting \mathbf{b} onto \mathbf{a} and letting $\mathbf{B}=\mathbf{b}-\mathbf{p}$. (\mathbf{B} is what we previously called e.)

$$
\mathbf{B}=\mathbf{b}-\frac{\mathbf{A}^{T} \mathbf{b}}{\mathbf{A}^{T} \mathbf{A}} \mathbf{A} .
$$

If we multiply both sides of this equation by \mathbf{A}^{T}, we see that $\mathbf{A}^{T} \mathbf{B}=0$.
What if we had started with three independent vectors, \mathbf{a}, \mathbf{b} and \mathbf{c} ? Then we'd find a vector \mathbf{C} orthogonal to both \mathbf{A} and \mathbf{B} by subtracting from \mathbf{c} its components in the \mathbf{A} and \mathbf{B} directions:

$$
\mathbf{C}=\mathbf{c}-\frac{\mathbf{A}^{T} \mathbf{c}}{\mathbf{A}^{T} \mathbf{A}} \mathbf{A}-\frac{\mathbf{B}^{T} \mathbf{c}}{\mathbf{B}^{T} \mathbf{B}} \mathbf{B}
$$

$$
\begin{aligned}
\text { For example, suppose } \mathbf{a} & =\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right] . \text { Then } \mathbf{A}=\mathbf{a} \text { and: } \\
\mathbf{B} & =\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]-\frac{\mathbf{A}^{T} \mathbf{b}}{\mathbf{A}^{T} \mathbf{A}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]-\frac{3}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right]
\end{aligned}
$$

Normalizing, we get:

$$
Q=\left[\begin{array}{ll}
\mathbf{q}_{1} & \mathbf{q}_{2}
\end{array}\right]=\left[\begin{array}{rr}
1 / \sqrt{3} & 0 \\
1 / \sqrt{3} & -1 / \sqrt{2} \\
1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right]
$$

The column space of Q is the plane spanned by \mathbf{a} and \mathbf{b}.
When we studied elimination, we wrote the process in terms of matrices and found $A=L U$. A similar equation $A=Q R$ relates our starting matrix A to the result Q of the Gram-Schmidt process. Where L was lower triangular, R is upper triangular.

Suppose $A=\left[\begin{array}{ll}\mathbf{a}_{1} & \mathbf{a}_{2}\end{array}\right]$. Then:

$$
\left.\begin{array}{c}
A \\
{\left[\begin{array}{cc}
\mathbf{a}_{1} & \mathbf{a}_{2}
\end{array}\right]=\left[\begin{array}{cc}
Q & R \\
\mathbf{q}_{1} & \mathbf{q}_{2}
\end{array}\right]}
\end{array} \begin{array}{cc}
\mathbf{a}_{1}^{T} \mathbf{q}_{1} & \mathbf{a}_{2}^{T} \mathbf{q}_{1} \\
\mathbf{a}_{1}^{T} \mathbf{q}_{2} & \mathbf{a}_{2}^{T} \mathbf{q}_{2}
\end{array}\right] .
$$

If R is upper triangular, then it should be true that $\mathbf{a}_{1}^{T} \mathbf{q}_{2}=0$. This must be true because we chose \mathbf{q}_{1} to be a unit vector in the direction of \mathbf{a}_{1}. All the later \mathbf{q}_{i} were chosen to be perpendicular to the earlier ones.

Notice that $R=Q^{T} A$. This makes sense; $Q^{T} Q=I$.

MIT OpenCourseWare
http://ocw.mit.edu

18.06SC Linear Algebra

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

