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  Orthogonal matrices and Gram-Schmidt 

In this lecture we finish introducing orthogonality. Using an orthonormal ba
sis or a matrix with orthonormal columns makes calculations much easier. The 
Gram-Schmidt process starts with any basis and produces an orthonormal ba
sis that spans the same space as the original basis. 

Orthonormal vectors 

The vectors q1, q2, ...qn are orthonormal if: 

qi
T qj =	

0 if i �= j 
1 if i = j. 

In other words, they all have (normal) length 1 and are perpendicular (ortho) 
to each other. Orthonormal vectors are always independent. 

Orthonormal matrix 

If the columns of Q = q1 ... qn are orthonormal, then QTQ = I is the 
identity. 

Matrices with orthonormal columns are a new class of important matri
ces to add to those on our list: triangular, diagonal, permutation, symmetric, 
reduced row echelon, and projection matrices. We’ll call them “orthonormal 
matrices”. 

A square orthonormal matrix Q is called an orthogonal matrix. If Q is square, 
then QTQ = I tells us that QT = Q−1. 

0 0 1 0 1 0 
For example, if Q = 1 0 0 then QT = 0 0 1 . Both Q and QT 

0 1 0 1 0 0 
are orthogonal matrices, and their product is the identity. 

not, but we can adjust that matrix to get the orthogonal matrix Q = 1

� � � � 

The matrix Q = cos θ 
sin θ 

− sin θ 
cos θ 

is orthogonal. The matrix 1 1 
1 −1� 

is 

1 1 √
2 1 −1 

We can use the same tactic to find some larger orthogonal matrices called 
Hadamard matrices: ⎡ ⎤ 

1 1 1 1 

Q = 
1 ⎢⎢ 1 −1 1 −1 ⎦⎥⎥ .
2 ⎣ 1 1 −1 −1 

1 −1 −1 1 

An example of a rectangular matrix with orthonormal columns is: ⎡	 ⎤ 
1 1 −2 

Q = 
3 
⎣ 2 −1 ⎦ . 

2 2 

1 

. 



We can extend this to a (square) orthogonal matrix: ⎡ ⎤ 
1 
3 
⎣ 

1 
2 
2 

−2 
−1 

2 

2 
−2 

1 
⎦ . 

These examples are particularly nice because they don’t include compli
cated square roots. 

Orthonormal columns are good 

Suppose Q has orthonormal columns. The matrix that projects onto the column 
space of Q is: 

P = QT (QTQ)−1QT . 

If the columns of Q are orthonormal, then QTQ = I and P = QQT . If Q is 
square, then P = I because the columns of Q span the entire space. 

Many equations become trivial when using a matrix with orthonormal columns. 
If our basis is orthonormal, the projection component x̂i is just qi

T b because 
AT Ax̂ = AT b becomes x̂ = QTb. 

Gram-Schmidt 

With elimination, our goal was “make the matrix triangular”. Now our goal is 
“make the matrix orthonormal”. 

We start with two independent vectors a and b and want to find orthonor
mal vectors q1 and q2 that span the same plane. We start by finding orthogonal 
vectors A and B that span the same space as a and b. Then the unit vectors 
q1 = A and q2 = B form the desired orthonormal basis. ||A|| ||B||

Let A = a. We get a vector orthogonal to A in the space spanned by a and 
b by projecting b onto a and letting B = b − p. (B is what we previously called 
e.) 

ATb
B = b − 

ATA
A. 

If we multiply both sides of this equation by AT , we see that ATB = 0. 
What if we had started with three independent vectors, a, b and c? Then 

we’d find a vector C orthogonal to both A and B by subtracting from c its 
components in the A and B directions: 

ATc BTc
C = c − 

ATA
A − 

BTB
B. 
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1 1

For example, suppose a = 1 and b = 0 . Then A = a and:


1 2
⎡ ⎤ ⎡ ⎤ 
1 AT b 1 

B = ⎣ 0 ⎦ ⎣ 1 ⎦− 
AT A2 1 ⎡ ⎤ ⎡ ⎤ 

1 13 
= ⎣ 0 ⎦ ⎣ 1 ⎦− 

32 1 ⎡ ⎤ 
0 

= ⎣ −1 ⎦ . 
1 

Normalizing, we get: ⎡ ⎤ 
1/

√
3 0 

Q = 
� 

q1 q2 
� 
= 1/

√
3 −1/

√
2⎣ ⎦ . 

1/
√

3 1/
√

2 

The column space of Q is the plane spanned by a and b. 

When we studied elimination, we wrote the process in terms of matrices 
and found A = LU. A similar equation A = QR relates our starting matrix A 
to the result Q of the Gram-Schmidt process. Where L was lower triangular, R 
is upper triangular. 

Suppose A = a1 a2 . Then: 

A Q � R � � � � � a1 
T q1 a2 

Tq1 . 
=a1 a2 q1 q2 a1 

T q2 a2 
Tq2 

If R is upper triangular, then it should be true that a1 
Tq2 = 0. This must be true 

because we chose q1 to be a unit vector in the direction of a1. All the later qi 
were chosen to be perpendicular to the earlier ones. 

Notice that R = QT A. This makes sense; QTQ = I. 
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