Exercises on orthogonal matrices and Gram-Schmidt

Problem 17.1: (4.4 \#10.b Introduction to Linear Algebra: Strang)
Orthonormal vectors are automatically linearly independent.
Matrix Proof: Show that $Q \mathbf{x}=\mathbf{0}$ implies $\mathbf{x}=\mathbf{0}$. Since Q may be rectangular, you can use Q^{T} but not Q^{-1}.

Problem 17.2: (4.4 \#18) Given the vectors a, band c listed below, use the Gram-Schmidt process to find orthogonal vectors \mathbf{A}, \mathbf{B}, and \mathbf{C} that span the same space.

$$
\mathbf{a}=(1,-1,0,0), \mathbf{b}=(0,1,-1,0), \mathbf{c}=(0,0,1,-1) .
$$

Show that $\{\mathbf{A}, \mathbf{B}, \mathbf{C}\}$ and $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ are bases for the space of vectors perpendicular to $\mathbf{d}=(1,1,1,1)$.

MIT OpenCourseWare
http://ocw.mit.edu

18.06SC Linear Algebra

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

