18.06SC Unit 2 Exam Solutions

1 (24 pts.) Suppose q_{1}, q_{2}, q_{3} are orthonormal vectors in \mathbb{R}^{3}. Find all possible values for these 3 by 3 determinants and explain your thinking in 1 sentence each.
(a) $\operatorname{det}\left[\begin{array}{lll}q_{1} & q_{2} & q_{3}\end{array}\right]=$
(b) $\operatorname{det}\left[\begin{array}{lll}q_{1}+q_{2} & q_{2}+q_{3} & q_{3}+q_{1}\end{array}\right]=$
(c) $\operatorname{det}\left[\begin{array}{lll}q_{1} & q_{2} & q_{3}\end{array}\right]$ times $\operatorname{det}\left[\begin{array}{lll}q_{2} & q_{3} & q_{1}\end{array}\right]=$

Solution.

(a) The determinant of any square matrix with orthonormal columns ("orthogonal matrix") is ± 1.
(b) Here are two ways you could do this:
(1) The determinant is linear in each column:

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{lll}
q_{1}+q_{2} & q_{2}+q_{3} & q_{3}+q_{1}
\end{array}\right] & =\operatorname{det}\left[\begin{array}{lll}
q_{1} & q_{2}+q_{3} & q_{3}+q_{1}
\end{array}\right]+\operatorname{det}\left[\begin{array}{lll}
q_{2} & q_{2}+q_{3} & q_{3}+q_{1}
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{lll}
q_{1} & q_{2}+q_{3} & q_{3}
\end{array}\right]+\operatorname{det}\left[\begin{array}{lll}
q_{2} & q_{3} & q_{3}+q_{1}
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{lll}
q_{1} & q_{2} & q_{3}
\end{array}\right]+\operatorname{det}\left[\begin{array}{lll}
q_{2} & q_{3} & q_{1}
\end{array}\right]
\end{aligned}
$$

Both of these determinants are equal (see (c)), so the total determinant is ± 2.
(2) You could also use row reduction. Here's what happens:

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{ccc}
q_{1}+q_{2} & q_{2}+q_{3} & q_{3}+q_{1}
\end{array}\right] & =\operatorname{det}\left[\begin{array}{lll}
q_{1}+q_{2} & -q_{1}+q_{3} & q_{3}+q_{1}
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{lll}
q_{1}+q_{2} & -q_{1}+q_{3} & 2 q_{3}
\end{array}\right] \\
& =2 \operatorname{det}\left[\begin{array}{lll}
q_{1}+q_{2} & -q_{1}+q_{3} & q_{3}
\end{array}\right] \\
& =2 \operatorname{det}\left[\begin{array}{lll}
q_{1}+q_{2} & -q_{1} & q_{3}
\end{array}\right] \\
& =2 \operatorname{det}\left[\begin{array}{lll}
q_{2} & -q_{1} & q_{3}
\end{array}\right] \\
& =2 \operatorname{det}\left[\begin{array}{lll}
q_{1} & q_{2} & q_{3}
\end{array}\right]
\end{aligned}
$$

Again, whatever $\operatorname{det}\left[\begin{array}{lll}q_{1} & q_{2} & q_{3}\end{array}\right]$ is, this determinant will be twice that, or ± 2.
(c) The second matrix is an even permutation of the columns of the first matrix (swap q_{1} / q_{2} then swap q_{2} / q_{3}), so it has the same determinant as the first matrix. Whether the first matrix has determinant +1 or -1 , the product will be +1 .

2 (24 pts.) Suppose we take measurements at the 21 equally spaced times $t=-10,-9, \ldots, 9,10$. All measurements are $b_{i}=0$ except that $b_{11}=1$ at the middle time $t=0$.
(a) Using least squares, what are the best \widehat{C} and \widehat{D} to fit those 21 points by a straight line $C+D t$?
(b) You are projecting the vector b onto what subspace? (Give a basis.) Find a nonzero vector perpendicular to that subspace.

Solution.

(a) If the line went exactly through the 21 points, then the 21 equations

$$
\left[\begin{array}{cc}
1 & -10 \\
1 & -9 \\
\vdots & \vdots \\
1 & 0 \\
\vdots & \vdots \\
1 & 10
\end{array}\right]\left[\begin{array}{c}
C \\
D
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right]
$$

would be exactly solvable. Since we can't solve this equation $A x=b$ exactly, we look for a least-squares solution $A^{\mathrm{T}} A \hat{x}=A^{\mathrm{T}} b$.

$$
\left[\begin{array}{cc}
21 & 0 \\
0 & 770
\end{array}\right]\left[\begin{array}{l}
\widehat{C} \\
\widehat{D}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

So the line of best fit is the horizontal line $\widehat{C}=\frac{1}{21}, \widehat{D}=0$.
(b) We are projecting b onto the column space of A above (basis: $\left[\begin{array}{lll}1 & \ldots & 1\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lll}-10 & \ldots & 10\end{array}\right]^{\mathrm{T}}$). There are lots of vectors perpendicular to this subspace; one is the error vector $e=$ $b-P_{A} b=\frac{1}{21}\left[\left(\begin{array}{lll}(\text { ten }-1 ' s) & 20 & (\text { ten }-1 ' s)\end{array}\right]^{\mathrm{T}}\right.$.
$3\left(\mathbf{9}+\mathbf{1 2}+\mathbf{9}\right.$ pts.) The Gram-Schmidt method produces orthonormal vectors q_{1}, q_{2}, q_{3} from independent vectors a_{1}, a_{2}, a_{3} in \mathbb{R}^{5}. Put those vectors into the columns of 5 by 3 matrices Q and A.
(a) Give formulas using Q and A for the projection matrices P_{Q} and P_{A} onto the column spaces of Q and A.
(b) Is $P_{Q}=P_{A}$ and why? What is P_{Q} times Q ? What is $\operatorname{det} P_{Q}$?
(c) Suppose a_{4} is a new vector and $a_{1}, a_{2}, a_{3}, a_{4}$ are independent. Which of these (if any) is the new Gram-Schmidt vector $q_{4} ?\left(P_{A}\right.$ and P_{Q} from above)

$$
\text { 1. } \frac{P_{Q} a_{4}}{\left\|P_{Q} a_{4}\right\|} \quad \text { 2. } \frac{a_{4}-\frac{a_{4}^{\mathrm{T}} a_{1}}{a_{1}^{T} a_{1}} a_{1}-\frac{a_{4}^{\mathrm{T}} a_{2}}{a_{2}^{4} a_{2}} a_{2}-\frac{a_{4}^{\mathrm{T}} a_{3}}{a_{3}^{4} a_{3}} a_{3}}{\| \text { norm of that vector } \|} \quad \text { 3. } \frac{a_{4}-P_{A} a_{4}}{\left\|a_{4}-P_{A} a_{4}\right\|}
$$

Solution.
(a) $P_{A}=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}$ and $P_{Q}=Q\left(Q^{\mathrm{T}} Q\right)^{-1} Q^{\mathrm{T}}=Q Q^{\mathrm{T}}$.
(b) $P_{A}=P_{Q}$ because both projections project onto the same subspace. (Some people did this the hard way, by substituting $A=Q R$ into the projection formula and simplifying. That also works.) The determinant is zero, because P_{Q} is singular (like all non-identity projections): all vectors orthogonal to the column space of Q are projected to 0 .
(c) Answer: choice 3. (Choice 2 is tempting, and would be correct if the a_{i} were replaced by the q_{i}. But the a_{i} are not orthogonal!)

4 (22 pts.) Suppose a 4 by 4 matrix has the same entry \times throughout its first row and column. The other 9 numbers could be anything like $1,5,7,2,3,99, \pi, e, 4$.

$$
A=\left[\begin{array}{clc}
\times & \times & \times \\
\times & \text { any numbers } \\
\times & \text { any numbers } \\
\times & \text { any numbers }
\end{array}\right]
$$

(a) The determinant of A is a polynomial in \times. What is the largest possible degree of that polynomial? Explain your answer.
(b) If those 9 numbers give the identity matrix I, what is $\operatorname{det} A$? Which values of \times give $\operatorname{det} A=0$?

$$
A=\left[\begin{array}{cccc}
\times & \times & \times & \times \\
\times & 1 & 0 & 0 \\
\times & 0 & 1 & 0 \\
\times & 0 & 0 & 1
\end{array}\right]
$$

Solution.
(a) Every term in the big formula for $\operatorname{det}(A)$ takes one entry from each row and column, so we can choose at most two \times 's and the determinant has degree 2 .
(b) You can find this by cofactor expansion; here's another way:

$$
\begin{aligned}
& \operatorname{det}(A)=\times \operatorname{det}\left[\begin{array}{cccc}
1 & \times & \times & \times \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]=\times \operatorname{det}\left[\begin{array}{cccc}
1-3 \times & \times & \times & \times \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\times(1-3 \times) \operatorname{det}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\times(1-3 \times) .
\end{aligned}
$$

This is zero when $\times=0$ or $\times=\frac{1}{3}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.06SC Linear Algebra
 Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

