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  Differential equations and eAt 

The system of equations below describes how the values of variables u1 and u2 
affect each other over time: 

du1 

dt 
= −u1 + 2u2 

du2 

dt 
= u1 − 2u2. 

Just as we applied linear algebra to solve a difference equation, we can use it 
to solve this differential equation. For example, the initial condition u1 = 1, 

1 u2 = 0 can be written u(0) = 0 . 

Differential equations d
dt 
u = Au 

By looking at the equations above, we might guess that over time u1 will de
crease. We can get the same sort of information more safely by looking at the 

eigenvalues of the matrix A = −
1
1 

−2
2 of our system 

d
dt 
u 
= Au. Because 

A is singular and its trace is −3 we know that its eigenvalues are λ1 = 0 and 
λ2 = −3. The solution will turn out to include e−3t and e0t . As t increases, 
e−3t vanishes and e0t = 1 remains constant. Eigenvalues equal to zero have 
eigenvectors that are steady state solutions. 

2 x1 = is an eigenvector for which Ax1 = 0x1. To find an eigenvector 1 
corresponding to λ2 = −3 we solve (A − λ2 I)x2 = 0: 

2 2 1 x2 = 0 so x2 = 1 1 −1 

and we can check that Ax2 = −3x2. The general solution to this system of 
differential equations will be: 

u(t) = c1eλ1tx1 + c2eλ2tx2. 

Is eλ1tx1 really a solution to d
dt 
u = Au? To find out, plug in u = eλ1tx1: 

du 
= λ1eλ1tx1,

dt 

which agrees with: 
Au = eλ1t Ax1 = λ1eλ1tx1. 

The two “pure” terms eλ1tx1 and eλ2tx2 are analogous to the terms λk
i xi we 

saw in the solution c1λ1
k x1 + c2λ2

k x2 + + cnλn
k xn to the difference equation · · · 

uk+1 = Auk. 

1 



� � � � 

� � 

� � � � � � 

� � � � 

� � 

� � 

Plugging in the values of the eigenvectors, we get: 

u(t) = c1eλ1tx1 + c2eλ2tx2 = c1 1
2 

+ c2e−3t 
−1

1 . 

1We know u(0) = 0 , so at t = 0: 

1 2 1 
0 = c1 1 + c2 −1 . 

c1 = c2 = 1/3 and u(t) = 3
1 

1
2 

+ 3
1 e−3t 

−1
1 . 

This tells us that the system starts with u1 = 1 and u2 = 0 but that as 
t approaches infinity, u1 decays to 2/3 and u2 increases to 1/3. This might 
describe stuff moving from u1 to u2. � � 

2/3 The steady state of this system is u(∞) = 1/3 . 

Stability 

Not all systems have a steady state. The eigenvalues of A will tell us what sort 
of solutions to expect: 

1. Stability: u(t) 0 when Re(λ) < 0.→ 

2. Steady state: One eigenvalue is 0 and all other eigenvalues have negative 
real part. 

3. Blow up: if Re(λ) > 0 for any eigenvalue λ. 

If a two by two matrix A = a b has two eigenvalues with negative c d 

real part, its trace a + d is negative. The converse is not true: −2 0 has0 1 

negative trace but one of its eigenvalues is 1 and e1t blows up. If A has a 
positive determinant and negative trace then the corresponding solutions must 
be stable. 

Applying S 

The final step of our solution to the system d
dt 
u = Au was to solve: � � � � � � 

2 1 1 c1 1 + c2 −1 = 0 . 

In matrix form: � � � � � � 
2 
1 

1 
−1 

c1 
c2 

= 
1 
0 . 
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or Sc = u(0), where S is the eigenvector matrix. The components of c deter
mine the contribution from each pure exponential solution, based on the initial 
conditions of the system. 

In the equation d
dt 
u = Au, the matrix A couples the pure solutions. We set 

u = Sv, where S is the matrix of eigenvectors of A, to get: 

dv
S = ASv

dt 
or: 

dv 
= S−1 ASv = Λv.

dt 

This diagonalizes the system: dvi = λivi. The general solution is then: dt 

v(t) = eΛtv(0), and 

u(t) = SeΛtS−1v(0) = eAtu(0). 

Matrix exponential eAt 

What does eAt mean if A is a matrix? We know that for a real number x, 
∞ xn x2 x3


ex = ∑ = 1 + x + + + .

n! 2 6 

· · · 
n=0 

We can use the same formula to define eAt: 

(At)2 (At)3 
eAt = I + At + + + .

2 6 
· · · 

Similarly, if the eigenvalues of At are small, we can use the geometric series 
1 ∞ 

1 − x 
= ∑ xn to estimate (I − At)−1 = I + At + (At)2 + (At)3 + · · · . 

n=0 

We’ve said that eAt = SeΛtS−1. If A has n independent eigenvectors we can 
prove this from the definition of eAt by using the formula A = SΛS−1: 

(At)2 (At)3 
eAt = I + At + + +

2 6 
· · · 

= SS−1 + SΛS−1t + 
SΛ2S−1 

t2 + 
SΛ3S−1 

t3 +
2 6 

· · · 

= SeΛtS−1. 

It’s impractical to add up infinitely many matrices. Fortunately, there is an 
easier way to compute eΛt. Remember that: ⎤⎡ 

Λ = 
⎢⎢⎢⎣ 

λ1 0 0· · · 
0 λ2 0 
. . . 

. . . 
. . . 

0 · · · 0 λn 
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When we plug this in to our formula for eAt we find that: ⎡ ⎤ 
eλ1t 0 · · · 0 

0 eλ2t 0 
. . . 

. . . 
. . . 

0 · · · 0 eλn t 

⎢⎢⎢⎣ 

⎥⎥⎥⎦ 
Λte = . 

This is another way to see the relationship between the stability of u(t) = 
SeΛtS−1v(0) and the eigenvalues of A. 

Second order 

We can change the second order equation y�� + by� + ky = 0 into a two by two 
first order system using a method similar to the one we used to find a formula 

for the Fibonacci numbers. If u = y� , then y � � 

u� = y
y

�
�
� 

= −
1 
b −

0 
k y

y 

� 
. 

We could use the methods we just learned to solve this system, and that would 
give us a solution to the second order scalar equation we started with. 

If we start with a kth order equation we get a k by k matrix with coefficients 
of the equation in the first row and 1’s on a diagonal below that; the rest of the 
entries are 0. 
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