Exercises on determinant formulas and cofactors

Problem 19.1: Compute the determinant of:

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

Which method of computing the determinant do you prefer for this problem, and why?

Solution: The preferred method is that of using **cofactors.** We apply the Big Formula:

$$\det A = \sum_{P = (\alpha, \beta, \dots, \omega)} (\det P) a_{1\alpha} a_{2\beta} \cdots a_{n\omega}$$

to *A*:

$$\det A = 0 \begin{vmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} - 0 \begin{vmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} + 0 \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{vmatrix} - 1 \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= -1 \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = -1.$$

This is quicker than row exchange:

$$\det A = \det \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = -\det \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
$$= \det \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} = -\det \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$= -1.$$

Problem 19.2: (5.2 #33. *Introduction to Linear Algebra:* Strang) The symmetric Pascal matrices have determinant 1. If I subtract 1 from the *n*, *n* entry, why does the determinant become zero? (Use rule 3 or cofactors.)

$$\det \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20 \end{bmatrix} = 1 \text{ (known)} \quad \det \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & \mathbf{19} \end{bmatrix} = \mathbf{0} \text{ (to explain)}.$$

Solution: The difference in the *n*, *n* entry (in the example, the difference between 19 and 20) multiplies its cofactor, the determinant of the n - 1 by n - 1 symmetric Pascal matrix. In our example this matrix is

$$\left[egin{array}{cccc} 1 & 1 & 1 \ 1 & 2 & 3 \ 1 & 3 & 6 \end{array}
ight].$$

We're told that this matrix has determinant 1. Since the n, n entry multiplies its cofactor positively, the overall determinant drops by 1 to become 0.

MIT OpenCourseWare http://ocw.mit.edu

18.06SC Linear Algebra Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.