Exercises on the geometry of linear equations

Problem 1.1: (1.3 #4. *Introduction to Linear Algebra:* Strang) Find a combination x_1 **w**₁ + x_2 **w**₂ + x_3 **w**₃ that gives the zero vector:

$$\mathbf{w}_1 = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix} \mathbf{w}_2 = \begin{bmatrix} 4\\ 5\\ 6 \end{bmatrix} \mathbf{w}_3 = \begin{bmatrix} 7\\ 8\\ 9 \end{bmatrix}.$$

Those vectors are (independent)(dependent).

The three vectors lie in a _____. The matrix *W* with those columns is *not invertible*.

	[1	2	0	3	
Problem 1.2: Multiply:	2	0	3	-2	.
	4	1	1	1	

Problem 1.3: True or false: A 3 by 2 matrix *A* times a 2 by 3 matrix *B* equals a 3 by 3 matrix *AB*. If this is false, write a similar sentence which is correct.

MIT OpenCourseWare http://ocw.mit.edu

18.06SC Linear Algebra Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.