The four fundamental subspaces

In this lecture we discuss the four fundamental spaces associated with a matrix and the relations between them.

Four subspaces

Any m by n matrix A determines four subspaces (possibly containing only the zero vector):

Column space, $C(A)$
$C(A)$ consists of all combinations of the columns of A and is a vector space in \mathbb{R}^{m}.

Nullspace, $N(A)$
This consists of all solutions \mathbf{x} of the equation $A \mathbf{x}=\mathbf{0}$ and lies in \mathbb{R}^{n}.

Row space, $C\left(A^{T}\right)$
The combinations of the row vectors of A form a subspace of R^{n}. We equate this with $C\left(A^{T}\right)$, the column space of the transpose of A.

Left nullspace, $N\left(A^{T}\right)$
We call the nullspace of A^{T} the left nullspace of A. This is a subspace of \mathbb{R}^{m}.

Basis and Dimension

Column space

The r pivot columns form a basis for $C(A)$

$$
\operatorname{dim} C(A)=r
$$

Nullspace

The special solutions to $A \mathbf{x}=\mathbf{0}$ correspond to free variables and form a basis for $N(A)$. An m by n matrix has $n-r$ free variables:

$$
\operatorname{dim} N(A)=n-r
$$

Row space

We could perform row reduction on A^{T}, but instead we make use of R, the row reduced echelon form of A.

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 1 \\
1 & 1 & 2 & 1 \\
1 & 2 & 3 & 1
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{cc}
I & F \\
0 & 0
\end{array}\right]=R
$$

Although the column spaces of A and R are different, the row space of R is the same as the row space of A. The rows of R are combinations of the rows of A, and because reduction is reversible the rows of A are combinations of the rows of R.

The first r rows of R are the "echelon" basis for the row space of A :

$$
\operatorname{dim} C\left(A^{T}\right)=r
$$

Left nullspace

The matrix A^{T} has m columns. We just saw that r is the rank of A^{T}, so the number of free columns of A^{T} must be $m-r$:

$$
\operatorname{dim} N\left(A^{T}\right)=m-r
$$

The left nullspace is the collection of vectors y for which $A^{T} y=0$. Equivalently, $y^{T} A=0$; here y and 0 are row vectors. We say "left nullspace" because y^{T} is on the left of A in this equation.

To find a basis for the left nullspace we reduce an augmented version of A :

$$
\left[\begin{array}{ll}
A_{m \times n} & I_{m \times n}
\end{array}\right] \longrightarrow\left[\begin{array}{ll}
R_{m \times n} & E_{m \times n}
\end{array}\right]
$$

From this we get the matrix E for which $E A=R$. (If A is a square, invertible matrix then $E=A^{-1}$.) In our example,

$$
E A=\left[\begin{array}{rrr}
-1 & 2 & 0 \\
1 & -1 & 0 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 2 & 3 & 1 \\
1 & 1 & 2 & 1 \\
1 & 2 & 3 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=R
$$

The bottom $m-r$ rows of E describe linear dependencies of rows of A, because the bottom $m-r$ rows of R are zero. Here $m-r=1$ (one zero row in R).

The bottom $m-r$ rows of E satisfy the equation $\mathbf{y}^{T} A=\mathbf{0}$ and form a basis for the left nullspace of A.

New vector space

The collection of all 3×3 matrices forms a vector space; call it M. We can add matrices and multiply them by scalars and there's a zero matrix (additive identity). If we ignore the fact that we can multiply matrices by each other, they behave just like vectors.

Some subspaces of M include:

- all upper triangular matrices
- all symmetric matrices
- D, all diagonal matrices
D is the intersection of the first two spaces. Its dimension is 3 ; one basis for D is:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 7
\end{array}\right] .
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.06SC Linear Algebra

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

