Solving $A \mathbf{x}=\mathbf{b}$: row reduced form R

When does $A \mathbf{x}=\mathbf{b}$ have solutions \mathbf{x}, and how can we describe those solutions?

Solvability conditions on \mathbf{b}

We again use the example:

$$
A=\left[\begin{array}{rrrr}
1 & 2 & 2 & 2 \\
2 & 4 & 6 & 8 \\
3 & 6 & 8 & 10
\end{array}\right]
$$

The third row of A is the sum of its first and second rows, so we know that if $A \mathbf{x}=\mathbf{b}$ the third component of \mathbf{b} equals the sum of its first and second components. If \mathbf{b} does not satisfy $b_{3}=b_{1}+b_{2}$ the system has no solution. If a combination of the rows of A gives the zero row, then the same combination of the entries of \mathbf{b} must equal zero.

One way to find out whether $A \mathbf{x}=\mathbf{b}$ is solvable is to use elimination on the augmented matrix. If a row of A is completely eliminated, so is the corresponding entry in \mathbf{b}. In our example, row 3 of A is completely eliminated:

$$
\left[\begin{array}{rrrrr}
1 & 2 & 2 & 2 & b_{1} \\
2 & 4 & 6 & 8 & b_{2} \\
3 & 6 & 8 & 10 & b_{3}
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{lllll}
1 & 2 & 2 & 2 & b_{1} \\
0 & 0 & 2 & 4 & b_{2}-2 b_{1} \\
0 & 0 & 0 & 0 & b_{3}-b_{2}-b_{1}
\end{array}\right]
$$

If $A \mathbf{x}=\mathbf{b}$ has a solution, then $b_{3}-b_{2}-b_{1}=0$. For example, we could choose $\mathbf{b}=\left[\begin{array}{l}1 \\ 5 \\ 6\end{array}\right]$.

From an earlier lecture, we know that $A \mathbf{x}=\mathbf{b}$ is solvable exactly when \mathbf{b} is in the column space $C(A)$. We have these two conditions on \mathbf{b}; in fact they are equivalent.

Complete solution

In order to find all solutions to $A \mathbf{x}=\mathbf{b}$ we first check that the equation is solvable, then find a particular solution. We get the complete solution of the equation by adding the particular solution to all the vectors in the nullspace.

A particular solution

One way to find a particular solution to the equation $A \mathbf{x}=\mathbf{b}$ is to set all free variables to zero, then solve for the pivot variables.

For our example matrix A, we let $x_{2}=x_{4}=0$ to get the system of equations:

$$
\begin{array}{r}
x_{1}+2 x_{3}=1 \\
2 x_{3}=3
\end{array}
$$

which has the solution $x_{3}=3 / 2, x_{1}=-2$. Our particular solution is:

$$
\mathbf{x}_{p}=\left[\begin{array}{r}
-2 \\
0 \\
3 / 2 \\
0
\end{array}\right]
$$

Combined with the nullspace

The general solution to $A \mathbf{x}=\mathbf{b}$ is given by $\mathbf{x}_{\text {complete }}=\mathbf{x}_{p}+\mathbf{x}_{n}$, where \mathbf{x}_{n} is a generic vector in the nullspace. To see this, we add $A \mathbf{x}_{p}=\mathbf{b}$ to $A \mathbf{x}_{n}=\mathbf{0}$ and get $A\left(\mathbf{x}_{p}+\mathbf{x}_{n}\right)=\mathbf{b}$ for every vector \mathbf{x}_{n} in the nullspace.

Last lecture we learned that the nullspace of A is the collection of all combinations of the special solutions $\left[\begin{array}{r}-2 \\ 1 \\ 0 \\ 0\end{array}\right]$ and $\left[\begin{array}{r}2 \\ 0 \\ -2 \\ 1\end{array}\right]$. So the complete solution to the equation $A \mathbf{x}=\left[\begin{array}{l}1 \\ 5 \\ 6\end{array}\right]$ is:

$$
\mathbf{x}_{\text {complete }}=\left[\begin{array}{r}
-2 \\
0 \\
3 / 2 \\
0
\end{array}\right]+\left[\begin{array}{r}
-2 \\
1 \\
0 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{r}
2 \\
0 \\
-2 \\
1
\end{array}\right]
$$

where c_{1} and c_{2} are real numbers.
The nullspace of A is a two dimensional subspace of \mathbb{R}^{4}, and the solutions to the equation $A \mathbf{x}=\mathbf{b}$ form a plane parallel to that through $x_{p}=\left[\begin{array}{r}-2 \\ 0 \\ 3 / 2 \\ 0\end{array}\right]$.

Rank

The rank of a matrix equals the number of pivots of that matrix. If A is an m by n matrix of rank r, we know $r \leq m$ and $r \leq n$.

Full column rank

If $r=n$, then from the previous lecture we know that the nullspace has dimension $n-r=0$ and contains only the zero vector. There are no free variables or special solutions.

If $A \mathbf{x}=\mathbf{b}$ has a solution, it is unique; there is either 0 or 1 solution. Examples like this, in which the columns are independent, are common in applications.

We know $r \leq m$, so if $r=n$ the number of columns of the matrix is less than or equal to the number of rows. The row reduced echelon form of the
matrix will look like $R=\left[\begin{array}{l}I \\ 0\end{array}\right]$. For any vector \mathbf{b} in \mathbb{R}^{m} that's not a linear combination of the columns of A, there is no solution to $A \mathbf{x}=\mathbf{b}$.

Full row rank

If $r=m$, then the reduced matrix $R=\left[\begin{array}{ll}I & F\end{array}\right]$ has no rows of zeros and so there are no requirements for the entries of \mathbf{b} to satisfy. The equation $A \mathbf{x}=\mathbf{b}$ is solvable for every \mathbf{b}. There are $n-r=n-m$ free variables, so there are $n-m$ special solutions to $A \mathbf{x}=\mathbf{0}$.

Full row and column rank

If $r=m=n$ is the number of pivots of A, then A is an invertible square matrix and R is the identity matrix. The nullspace has dimension zero, and $A \mathbf{x}=\mathbf{b}$ has a unique solution for every \mathbf{b} in \mathbb{R}^{m}.

Summary

If R is in row reduced form with pivot columns first (rref), the table below summarizes our results.

	$r=m=n$	$r=n<m$	$r=m<n$	$r<m, r<n$
R	I	$\left[\begin{array}{l}I \\ 0\end{array}\right]$	$\left[\begin{array}{ll}I & F\end{array}\right]$	$\left[\begin{array}{cc}I & F \\ 0 & 0\end{array}\right]$
\# solutions to $A \mathbf{x}=\mathbf{b}$	1	0 or 1	infinitely many	0 or infinitely many

MIT OpenCourseWare
http://ocw.mit.edu

18.06SC Linear Algebra

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

