Exercises on matrix spaces; rank 1; small world graphs

Problem 11.1: [Optional] (3.5 \#41. Introduction to Linear Algebra: Strang) Write the 3 by 3 identity matrix as a combination of the other five permutation matrices. Then show that those five matrices are linearly independent. (Assume a combination gives $c_{1} P_{1}+\cdots+c_{5} P_{5}=0$ and check entries to prove c_{i} is zero.) The five permutation matrices are a basis for the subspace of three by three matrices with row and column sums all equal.

Problem 11.2: (3.6\#31.) \mathbf{M} is the space of three by three matrices. Multiply each matrix X in \mathbf{M} by:

$$
A=\left[\begin{array}{rrr}
1 & 0 & -1 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]
$$

Notice that $A\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.
a) Which matrices X lead to $A X=0$?
b) Which matrices have the form $A X$ for some matrix X ?
c) Part (a) finds the "nullspace" of the operation $A X$ and part (b) finds the "column space." What are the dimensions of those two subspaces of \mathbf{M} ? Why do the dimensions add to $(n-r)+r=9$?

MIT OpenCourseWare
http://ocw.mit.edu

18.06SC Linear Algebra

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

