Exercises on independence, basis, and dimension

Problem 9.1: (3.5 \#2. Introduction to Linear Algebra: Strang) Find the largest possible number of independent vectors among:

$$
\begin{gathered}
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
0 \\
0
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}
1 \\
0 \\
-1 \\
0
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}
1 \\
0 \\
0 \\
-1
\end{array}\right], \\
\mathbf{v}_{4}=\left[\begin{array}{r}
0 \\
1 \\
-1 \\
0
\end{array}\right], \mathbf{v}_{5}=\left[\begin{array}{r}
0 \\
1 \\
0 \\
-1
\end{array}\right] \text { and } \mathbf{v}_{6}=\left[\begin{array}{r}
0 \\
0 \\
1 \\
-1
\end{array}\right] .
\end{gathered}
$$

Problem 9.2: (3.5 \#20.) Find a basis for the plane $x-2 y+3 z=0$ in \mathbb{R}^{3}. Then find a basis for the intersection of that plane with the $x y$ plane. Then find a basis for all vectors perpendicular to the plane.

MIT OpenCourseWare
http://ocw.mit.edu

18.06SC Linear Algebra

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

