# Exam 1 review

This lecture is a review for the exam. The majority of the exam is on what we've learned about rectangular matrices.

#### Sample question 1

Suppose **u**, **v** and **w** are non-zero vectors in  $\mathbb{R}^7$ . They span a subspace of  $\mathbb{R}^7$ . What are the possible dimensions of that vector space?

The answer is 1, 2 or 3. The dimension can't be higher because a basis for this subspace has at most three vectors. It can't be 0 because the vectors are non-zero.

### Sample question 2

Suppose a 5 by 3 matrix *R* in reduced row echelon form has r = 3 pivots.

1. What's the nullspace of *R*?

Since the rank is 3 and there are 3 columns, there is no combination of the columns that equals **0** except the trivial one.  $N(R) = \{\mathbf{0}\}$ .

2. Let *B* be the 10 by 3 matrix  $\begin{bmatrix} R \\ 2R \end{bmatrix}$ . What's the reduced row echelon form of *B*?

Answer:  $\begin{bmatrix} R \\ 0 \end{bmatrix}$ .

3. What is the rank of *B*?

Answer: 3.

4. What is the reduced row echelon form of  $C = \begin{bmatrix} R & R \\ R & 0 \end{bmatrix}$ ?

When we perform row reduction we get:

$$\left[\begin{array}{cc} R & R \\ R & 0 \end{array}\right] \longrightarrow \left[\begin{array}{cc} R & R \\ 0 & -R \end{array}\right] \longrightarrow \left[\begin{array}{cc} R & 0 \\ 0 & -R \end{array}\right] \longrightarrow \left[\begin{array}{cc} R & 0 \\ 0 & R \end{array}\right].$$

Then we might need to move some zero rows to the bottom of the matrix.

5. What is the rank of *C*?

Answer: 6.

6. What is the dimension of the nullspace of  $C^T$ ? m = 10 and r = 6 so dim  $N(C^T) = 10 - 6 = 4$ .

# Sample question 3

Suppose we know that 
$$A\mathbf{x} = \begin{bmatrix} 2\\4\\2 \end{bmatrix}$$
 and that:  
$$\mathbf{x} = \begin{bmatrix} 2\\0\\0 \end{bmatrix} + c \begin{bmatrix} 1\\1\\0 \end{bmatrix} + d \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

is a complete solution.

Note that in this problem we don't know what *A* is.

1. What is the shape of the matrix *A*?

Answer: 3 by 3, because **x** and **b** both have three components.

2. What's the dimension of the row space of *A*?

From the complete solution we can see that the dimension of the nullspace of *A* is 2, so the rank of *A* must be 3 - 2 = 1.

3. What is *A*?

Because the second and third components of the particular solution  $\begin{bmatrix} 2\\0\\0 \end{bmatrix}$ 

are zero, we see that the first column vector of *A* must be  $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ .

Knowing that  $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$  is in the nullspace tells us that the third column of *A* must be **0**. The fact that  $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$  is in the nullspace tells us that the second column must be the negative of the first. So,

$$A = \left[ \begin{array}{rrrr} 1 & -1 & 0 \\ 2 & -2 & 0 \\ 1 & -1 & 0 \end{array} \right]$$

If we had time, we could check that this *A* times **x** equals **b**.

4. For what vectors *b* does  $A\mathbf{x} = \mathbf{b}$  have a solution  $\mathbf{x}$ ? This equation has a solution exactly when **b** is in the column space of *A*, so when **b** is a multiple of  $\begin{bmatrix} 1\\2\\1 \end{bmatrix}$ . This makes sense; we know that the rank of *A* is 1 and the nullspace is large. In contrast, we might have had r = m or r = n.

## Sample question 4

Suppose:

|          | [ 1 | 1 | 0 | 1 | 1 | 0 | -1 | 2  |   |
|----------|-----|---|---|---|---|---|----|----|---|
| B = CD = | 0   | 1 | 0 |   | 0 | 1 | 1  | -1 | . |
|          | 1   | 0 | 1 |   | 0 | 0 | 0  | 0  |   |

Try to answer the questions below without performing this matrix multiplication *CD*.

1. Give a basis for the nullspace of *B*.

The matrix *B* is 3 by 4, so  $N(B) \subseteq \mathbb{R}^4$ . Because  $C = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$  is invertible, the nullspace of *B* is the same as the nullspace of  $D = \begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ . Matrix *D* is in reduced form, so its special solutions form a basis for N(D) = N(B):



These vectors are independent, and if time permits we can multiply to check that they are in N(B).

2. Find the complete solution to  $B\mathbf{x} = \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}$ .

We can now describe any vector in the nullspace, so all we need to do is find a particular solution. There are many possible particular solutions; the simplest one is given below.

One way to solve this is to notice that  $C\begin{bmatrix} 1\\0\\0 \end{bmatrix} = \begin{bmatrix} 1\\0\\1 \end{bmatrix}$  and then find a vector **x** for which  $D\mathbf{x} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$ . Another approach is to notice that the first column of B = CD is  $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$ . In either case, we get the complete solution:  $\begin{bmatrix} 1\\0\\1 \end{bmatrix} \begin{bmatrix} 1\\1\\1 \end{bmatrix} \begin{bmatrix} -2\\1 \end{bmatrix}$ 

$$\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + c \begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix} + d \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}.$$

Again, we can check our work by multiplying.

## Short questions

There may not be true/false questions on the exam, but it's a good idea to review these:

1. Given a square matrix *A* whose nullspace is just {**0**}, what is the nullspace of *A*<sup>*T*</sup>?

 $N(A^T)$  is also {**0**} because A is square.

2. Do the invertible matrices form a subspace of the vector space of 5 by 5 matrices?

No. The sum of two invertible matrices may not be invertible. Also, 0 is not invertible, so is not in the collection of invertible matrices.

3. True or false: If  $B^2 = 0$ , then it must be true that B = 0.

False. We could have  $B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ .

4. True or false: A system  $A\mathbf{x} = \mathbf{b}$  of *n* equations with *n* unknowns is solvable for every right hand side  $\mathbf{b}$  if the columns of *A* are independent.

True. *A* is invertible, and  $\mathbf{x} = A^{-1}\mathbf{b}$  is a (unique) solution.

5. True or false: If m = n then the row space equals the column space.

False. The dimensions are equal, but the spaces are not. A good example to look at is  $B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ .

6. True or false: The matrices A and -A share the same four spaces.

True, because whenever a vector  $\mathbf{v}$  is in a space, so is  $-\mathbf{v}$ .

7. True or false: If *A* and *B* have the same four subspaces, then *A* is a multiple of *B*.

A good way to approach this question is to first try to convince yourself that it isn't true – look for a counterexample. If *A* is 3 by 3 and invertible, then its row and column space are both  $\mathbb{R}^3$  and its nullspaces are {**0**}. If *B* is any other invertible 3 by 3 matrix it will have the same four subspaces, and it may not be a multiple of *A*. So we answer "false".

It's good to ask how we could truthfully complete the statement "If *A* and *B* have the same four subspaces, then ..."

8. If we exchange two rows of *A*, which subspaces stay the same?

The row space and the nullspace stay the same.

9. Why can't a vector  $\mathbf{v} = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$  be in the nullspace of *A* and also be a row of *A*?

Because if **v** is the  $n^{\text{th}}$  row of *A*, the  $n^{\text{th}}$  component of the vector A**v** would be 14, not 0. The vector **v** could not be a solution to A**v** = **0**. In fact, we will learn that the row space is perpendicular to the nullspace.

MIT OpenCourseWare http://ocw.mit.edu

18.06SC Linear Algebra Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.