Column space and nullspace

In this lecture we continue to study subspaces, particularly the column space and nullspace of a matrix.

Review of subspaces

A vector space is a collection of vectors which is closed under linear combinations. In other words, for any two vectors \mathbf{v} and \mathbf{w} in the space and any two real numbers c and d, the vector $c \mathbf{v}+d \mathbf{w}$ is also in the vector space. A subspace is a vector space contained inside a vector space.

A plane P containing $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ and a line L containing $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ are both subspaces of \mathbb{R}^{3}. The union $P \cup L$ of those two subspaces is generally not a subspace, because the sum of a vector in P and a vector in L is probably not contained in $P \cup L$. The intersection $S \cap T$ of two subspaces S and T is a subspace. To prove this, use the fact that both S and T are closed under linear combinations to show that their intersection is closed under linear combinations.

Column space of A

The column space of a matrix A is the vector space made up of all linear combinations of the columns of A.

Solving $A \mathbf{x}=\mathbf{b}$

Given a matrix A, for what vectors \mathbf{b} does $A \mathbf{x}=\mathbf{b}$ have a solution \mathbf{x} ?

$$
\text { Let } A=\left[\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 3 \\
3 & 1 & 4 \\
4 & 1 & 5
\end{array}\right]
$$

Then $A \mathbf{x}=\mathbf{b}$ does not have a solution for every choice of \mathbf{b} because solving $A \mathbf{x}=\mathbf{b}$ is equivalent to solving four linear equations in three unknowns. If there is a solution \mathbf{x} to $A \mathbf{x}=\mathbf{b}$, then \mathbf{b} must be a linear combination of the columns of A. Only three columns cannot fill the entire four dimensional vector space - some vectors \mathbf{b} cannot be expressed as linear combinations of columns of A.

Big question: what \mathbf{b} 's allow $A \mathbf{x}=\mathbf{b}$ to be solved?
A useful approach is to choose \mathbf{x} and find the vector $\mathbf{b}=A \mathbf{x}$ corresponding to that solution. The components of \mathbf{x} are just the coefficients in a linear combination of columns of A.

The system of linear equations $A \mathbf{x}=\mathbf{b}$ is solvable exactly when \mathbf{b} is a vector in the column space of A.

For our example matrix A, what can we say about the column space of A ? Are the columns of A independent? In other words, does each column contribute something new to the subspace?

The third column of A is the sum of the first two columns, so does not add anything to the subspace. The column space of our matrix A is a two dimensional subspace of \mathbb{R}^{4}.

Nullspace of A

The nullspace of a matrix A is the collection of all solutions $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ to the equation $A \mathbf{x}=0$.

The column space of the matrix in our example was a subspace of \mathbb{R}^{4}. The nullspace of A is a subspace of \mathbb{R}^{3}. To see that it's a vector space, check that any sum or multiple of solutions to $A \mathbf{x}=\mathbf{0}$ is also a solution: $A\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)=$ $A \mathbf{x}_{1}+A \mathbf{x}_{2}=\mathbf{0}+\mathbf{0}$ and $A(c \mathbf{x})=c A \mathbf{x}=c(\mathbf{0})$.

In the example:

$$
\left[\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 3 \\
3 & 1 & 4 \\
4 & 1 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

the nullspace $N(A)$ consists of all multiples of $\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right]$; column 1 plus column 2 minus column 3 equals the zero vector. This nullspace is a line in \mathbb{R}^{3}.

Other values of \mathbf{b}

The solutions to the equation:

$$
\left[\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 3 \\
3 & 1 & 4 \\
4 & 1 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

do not form a subspace. The zero vector is not a solution to this equation. The set of solutions forms a line in \mathbb{R}^{3} that passes through the points $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and $\left[\begin{array}{r}0 \\ -1 \\ 1\end{array}\right]$ but not $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.

MIT OpenCourseWare
http://ocw.mit.edu

18.06SC Linear Algebra

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

