Exercises on column space and nullspace

Problem 6.1: (3.1 #30. *Introduction to Linear Algebra:* Strang) Suppose **S** and **T** are two subspaces of a vector space **V**.

- a) **Definition:** The sum S + T contains all sums s + t of a vector s in S and a vector t in T. Show that S + T satisfies the requirements (addition and scalar multiplication) for a vector space.
- b) If **S** and **T** are lines in \mathbb{R}^m , what is the difference between $\mathbb{S} + \mathbb{T}$ and $\mathbb{S} \cup \mathbb{T}$? That union contains all vectors from **S** and **T** or both. Explain this statement: *The span of* $\mathbb{S} \cup \mathbb{T}$ *is* $\mathbb{S} + \mathbb{T}$.

Solution:

a) Let \mathbf{s}, \mathbf{s}' be vectors in \mathbf{S} , let \mathbf{t}, \mathbf{t}' be vectors in \mathbf{T} , and let c be a scalar. Then

$$(\mathbf{s} + \mathbf{t}) + (\mathbf{s}' + \mathbf{t}') = (\mathbf{s} + \mathbf{s}') + (\mathbf{t} + \mathbf{t}')$$
 and $c(\mathbf{s} + \mathbf{t}) = c\mathbf{s} + c\mathbf{t}$.

Thus $\mathbf{S} + \mathbf{T}$ is closed under addition and scalar multiplication; in other words, it satisfies the two requirements for a vector space.

b) If **S** and **T** are distinct lines, then S+T is a plane, whereas $S\cup T$ is only the two lines. The span of $S\cup T$ is the set of all combinations of vectors in this union of two lines. In particular, it contains all sums s+t of a vector s in S and a vector t in T, and these sums form S+T.

Since S + T contains both S and T, it contains $S \cup T$. Further, S + T is a vector space. So it contains all combinations of vectors in itself; in particular, it contains the span of $S \cup T$. Thus the span of $S \cup T$ is S + T.

Problem 6.2: (3.2 #18.) The plane x - 3y - z = 12 is parallel to the plane x - 3y - x = 0. One particular point on this plane is (12, 0, 0). All points on the plane have the form (fill in the first components)

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + y \begin{bmatrix} 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Solution: The equation x = 12 + 3y + z says it all:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \left(= \begin{bmatrix} 12 + 3y + z \\ y \\ z \end{bmatrix} \right) = \begin{bmatrix} \boxed{12} \\ 0 \\ 0 \end{bmatrix} + y \begin{bmatrix} \boxed{3} \\ 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} \boxed{1} \\ 0 \\ 1 \end{bmatrix}.$$

Problem 6.3: (3.2 #36.) How is the nullspace $\mathbf{N}(C)$ related to the spaces $\mathbf{N}(A)$ and $\mathbf{N}(B)$, if $C = \begin{bmatrix} A \\ B \end{bmatrix}$?

Solution: $N(C) = N(A) \cap N(B)$ contains all vectors that are in both nullspaces:

$$C\mathbf{x} = \left[\begin{array}{c} A\mathbf{x} \\ B\mathbf{x} \end{array} \right] = 0$$

if and only if $A\mathbf{x} = 0$ and $B\mathbf{x} = 0$.

MIT OpenCourseWare http://ocw.mit.edu

18.06SC Linear Algebra Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.