## An overview of key ideas

This is an overview of linear algebra given at the start of a course on the mathematics of engineering.

Linear algebra progresses from vectors to matrices to subspaces.

## Vectors

What do you do with vectors? Take combinations.
We can multiply vectors by scalars, add, and subtract. Given vectors $\mathbf{u}, \mathbf{v}$ and $\mathbf{w}$ we can form the linear combination $x_{1} \mathbf{u}+x_{2} \mathbf{v}+x_{3} \mathbf{w}=\mathbf{b}$.

An example in $\mathbb{R}^{3}$ would be:

$$
\mathbf{u}=\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right], \mathbf{v}=\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right], \mathbf{w}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

The collection of all multiples of $\mathbf{u}$ forms a line through the origin. The collection of all multiples of $\mathbf{v}$ forms another line. The collection of all combinations of $\mathbf{u}$ and $\mathbf{v}$ forms a plane. Taking all combinations of some vectors creates a subspace.

We could continue like this, or we can use a matrix to add in all multiples of $\mathbf{w}$.

## Matrices

Create a matrix $A$ with vectors $\mathbf{u}, \mathbf{v}$ and $\mathbf{w}$ in its columns:

$$
A=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]
$$

The product:

$$
A \mathbf{x}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
x_{1} \\
-x_{1}+x_{2} \\
-x_{2}+x_{3}
\end{array}\right]
$$

equals the sum $x_{1} \mathbf{u}+x_{2} \mathbf{v}+x_{3} \mathbf{w}=\mathbf{b}$. The product of a matrix and a vector is a combination of the columns of the matrix. (This particular matrix $A$ is a difference matrix because the components of $A \mathbf{x}$ are differences of the components of that vector.)

When we say $x_{1} \mathbf{u}+x_{2} \mathbf{v}+x_{3} \mathbf{w}=\mathbf{b}$ we're thinking about multiplying numbers by vectors; when we say $A \mathbf{x}=\mathbf{b}$ we're thinking about multiplying a matrix (whose columns are $\mathbf{u}, \mathbf{v}$ and $\mathbf{w}$ ) by the numbers. The calculations are the same, but our perspective has changed.

For any input vector $\mathbf{x}$, the output of the operation "multiplication by $A$ " is some vector $\mathbf{b}$ :

$$
A\left[\begin{array}{l}
1 \\
4 \\
9
\end{array}\right]=\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]
$$

A deeper question is to start with a vector $\mathbf{b}$ and ask "for what vectors $\mathbf{x}$ does $A \mathbf{x}=\mathbf{b} ?^{\prime \prime}$ In our example, this means solving three equations in three unknowns. Solving:

$$
A \mathbf{x}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
x_{1} \\
x_{2}-x_{1} \\
x_{3}-x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

is equivalent to solving:

$$
\begin{aligned}
x_{1} & =b_{1} \\
x_{2}-x_{1} & =b_{2} \\
x_{3}-x_{2} & =b_{3}
\end{aligned}
$$

We see that $x_{1}=b_{1}$ and so $x_{2}$ must equal $b_{1}+b_{2}$. In vector form, the solution is:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
b_{1} \\
b_{1}+b_{2} \\
b_{1}+b_{2}+b_{3}
\end{array}\right] .
$$

But this just says:

$$
\mathbf{x}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

or $\mathbf{x}=A^{-1} \mathbf{b}$. If the matrix $A$ is invertible, we can multiply on both sides by $A^{-1}$ to find the unique solution $\mathbf{x}$ to $A \mathbf{x}=\mathbf{b}$. We might say that $A$ represents a transform $\mathbf{x} \rightarrow \mathbf{b}$ that has an inverse transform $\mathbf{b} \rightarrow \mathbf{x}$.

In particular, if $\mathbf{b}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ then $\mathbf{x}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.
The second example has the same columns $\mathbf{u}$ and $\mathbf{v}$ and replaces column vector $\mathbf{w}$ :

$$
C=\left[\begin{array}{rrr}
1 & 0 & -1 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]
$$

Then:

$$
C \mathbf{x}=\left[\begin{array}{rrr}
1 & 0 & -1 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1}-x_{3} \\
x_{2}-x_{1} \\
x_{3}-x_{2}
\end{array}\right]
$$

and our system of three equations in three unknowns becomes circular.

Where before $A \mathbf{x}=\mathbf{0}$ implied $\mathbf{x}=\mathbf{0}$, there are non-zero vectors $\mathbf{x}$ for which $C \mathbf{x}=\mathbf{0}$. For any vector $\mathbf{x}$ with $x_{1}=x_{2}=x_{3}, C \mathbf{x}=0$. This is a significant difference; we can't multiply both sides of $C \mathbf{x}=\mathbf{0}$ by an inverse to find a nonzero solution $\mathbf{x}$.

The system of equations encoded in $C \mathbf{x}=\mathbf{b}$ is:

$$
\begin{aligned}
x_{1}-x_{3} & =b_{1} \\
x_{2}-x_{1} & =b_{2} \\
x_{3}-x_{2} & =b_{3}
\end{aligned}
$$

If we add these three equations together, we get:

$$
0=b_{1}+2+b_{3}
$$

This tells us that $C \mathbf{x}=\mathbf{b}$ has a solution $\mathbf{x}$ only when the components of $\mathbf{b}$ sum to 0 . In a physical system, this might tell us that the system is stable as long as the forces on it are balanced.

## Subspaces

Geometrically, the columns of $C$ lie in the same plane (they are dependent; the columns of $A$ are independent). There are many vectors in $\mathbb{R}^{3}$ which do not lie in that plane. Those vectors cannot be written as a linear combination of the columns of $C$ and so correspond to values of $\mathbf{b}$ for which $C \mathbf{x}=\mathbf{b}$ has no solution $\mathbf{x}$. The linear combinations of the columns of $C$ form a two dimensional subspace of $\mathbb{R}^{3}$.

This plane of combinations of $\mathbf{u}, \mathbf{v}$ and $\mathbf{w}$ can be described as "all vectors $C \mathbf{x}^{\prime \prime}$. But we know that the vectors $\mathbf{b}$ for which $C \mathbf{x}=\mathbf{b}$ satisfy the condition $b_{1}+b_{2}+b_{3}=0$. So the plane of all combinations of $\mathbf{u}$ and $\mathbf{v}$ consists of all vectors whose components sum to 0 .

If we take all combinations of:

$$
\mathbf{u}=\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right], \mathbf{v}=\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right], \text { and } \mathbf{w}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

we get the entire space $\mathbb{R}^{3}$; the equation $A \mathbf{x}=\mathbf{b}$ has a solution for every $\mathbf{b}$ in $\mathbb{R}^{3}$. We say that $\mathbf{u}, \mathbf{v}$ and $\mathbf{w}$ form a basis for $\mathbb{R}^{3}$.

A basis for $\mathbb{R}^{n}$ is a collection of $n$ independent vectors in $\mathbb{R}^{n}$. Equivalently, a basis is a collection of $n$ vectors whose combinations cover the whole space. Or, a collection of vectors forms a basis whenever a matrix which has those vectors as its columns is invertible.

A vector space is a collection of vectors that is closed under linear combinations. A subspace is a vector space inside another vector space; a plane through the origin in $\mathbb{R}^{3}$ is an example of a subspace. A subspace could be equal to the space it's contained in; the smallest subspace contains only the zero vector.

The subspaces of $\mathbb{R}^{3}$ are:

- the origin,
- a line through the origin,
- a plane through the origin,
- all of $\mathbb{R}^{3}$.


## Conclusion

When you look at a matrix, try to see "what is it doing?"
Matrices can be rectangular; we can have seven equations in three unknowns. Rectangular matrices are not invertible, but the symmetric, square matrix $A^{T} A$ that often appears when studying rectangular matrices may be invertible.

MIT OpenCourseWare
http://ocw.mit.edu

### 18.06SC Linear Algebra

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

