SIMPLE AND POSITIVE ROOTS

YOUR NAME HERE

18.099 - 18.06 CI. Due on Monday, May 10 in class.

Write a paper proving the statements and working through the examples formulated below. Add your own examples, asides and discussions whenever needed.

Let V be a Euclidean space, that is a finite dimensional real linear space with a symmetric positive definite inner product \langle , \rangle .

Recall that a root system in V is a finite set Δ of nonzero elements of V such that

(1) Δ spans V;

(2) for all $\alpha \in \Delta$, the reflections

$$s_{\alpha}(\beta) = \beta - \frac{2\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha$$

map the set Δ to itself;

(3) the number $\frac{2\langle\beta,\alpha\rangle}{\langle\alpha,\alpha\rangle}$ is an integer for any $\alpha,\beta\in\Delta$.

A root is an element of Δ .

Here are two examples of root systems in \mathbb{R}^2 :

Example 1. The root system of the type $A_1 \oplus A_1$ consists of the four vectors $\{\pm e_1, \pm e_2\}$ where $\{e_1, e_2\}$ is an orthonormal basis in \mathbb{R}^2 .

Example 2. The root system of the type A_2 consists of the six vectors $\{e_i - e_j\}_{i \neq j}$ in the plane orthogonal to the line $e_1 + e_2 + e_3$ where $\{e_1, e_2, e_3\}$ is an orthonormal basis in \mathbb{R}^3 . Rewrite the vectors of this root system in a standard orthonormal basis of the plane and sketch it.

Since for any $\alpha \in \Delta$, $-\alpha$ is also in Δ , (see [1], Thm.8(1)), the number of elements in Δ is always greater than the dimension of V. The example of type A_2 above shows that even a subset of mutually noncollinear vectors in Δ might be too big to be linearly independent. In the present paper we would like to define a subset of Δ small enough to be a basis for V, yet large enough to contain the essential information about the geometric properties of Δ . Here is a formal definition.

Date: July 18, 2004.

YOUR NAME HERE

Definition 3. A subset Π of Δ is a set of simple roots (a simple root system) in Δ if

- (1) Π is a basis for V;
- (2) Each root β ∈ Δ can be written as a linear combination of the elements of Π with integer coefficients of the same sign, that is,

$$\beta = \sum_{\alpha \in \Pi} m_{\alpha} \alpha$$

with all $m_{\alpha} \geq 0$ or all $m_{\alpha} \leq 0$.

The root β is positive if the coefficients are nonnegative, and negative otherwise. The set of all positive roots (the positive root system) associated to Π will be denoted Δ^+ .

Below we construct a set Π_t associated to an element $t \in V$ and a root system Δ , and show that it satisfies the definition of a simple root system in Δ .

Let Δ be a root system in V, and let $t \in V$ be a vector such that $\langle t, \alpha \rangle \neq 0$ for all $\alpha \in \Delta$ (Check that such an element always exists). Set

$$\Delta_t^+ = \{ \alpha \in \Delta : \langle t, \alpha \rangle > 0 \}.$$

Let $\Delta_t^- = \{-\alpha, \alpha \in \Delta_t^+\}$. Check that $\Delta = \Delta_t^+ \cup \Delta_t^-$.

Definition 4. An element $\alpha \in \Delta_t^+$ is decomposable if there exist $\beta, \gamma \in \Delta_t^+$ such that $\alpha = \beta + \gamma$. Otherwise $\alpha \in \Delta_t^+$ is indecomposable.

Let $\Pi_t \subset \Delta_t^+$ be the set of all indecomposable elements in Δ_t^+ . The next three Lemmas prove the properties of Δ_t^+ and Π_t .

Lemma 5. Any element in Δ_t^+ can be written as a linear combination of elements in Π_t with nonnegative integer coefficients.

Hint: By contradiction. Suppose γ is an element of Δ_t^+ for which the Lemma is false and $\langle t, \gamma \rangle > 0$ is minimal, and use that γ is decomposable to get a contradiction.

Lemma 6. If $\alpha, \beta \in \Pi_t$, then $\langle \alpha, \beta \rangle \leq 0$.

Hint: Use Thm. 10(1) in [1] : if $\langle \alpha, \beta \rangle > 0$, then $\alpha - \beta$ is a root or 0.

Add discussion: what does this result mean for the relative position of two simple roots?

Lemma 7. Let A be a subset of V such that

(1) $\langle t, \alpha \rangle > 0$ for all $\alpha \in A$;

(2) $\langle \alpha, \beta \rangle \leq 0$ for all $\alpha, \beta \in A$.

Then the elements of A are linearly independent.

Hint: Assume the elements of A are linearly dependent and split the nontrivial linear combination into two sums, with positive and negative coefficients. Let $\lambda = \sum m_{\beta}\beta = \sum n_{\gamma}\gamma$ with $\beta, \gamma \in A$ and all $m_{\beta}, n_{\gamma} > 0$. Show that $\langle \lambda, \lambda \rangle = 0$.

 $\mathbf{2}$

Now we are ready to prove the existence of a simple root set in any abstract root system.

Theorem 8. For any $t \in V$ such that $\langle t, \alpha \rangle \neq 0$ for all $\alpha \in \Delta$, the set Π_t constructed above is a set of simple roots, and Δ_t^+ the associated set of positive roots.

Hint: Use lemmas 5, 6, 7.

The converse statement is also true (and much easier to prove):

Theorem 9. Let Π be a set of simple roots in Δ , and suppose that $t \in V$ is such that $\langle t, \alpha \rangle > 0$ for all $\alpha \in \Pi$. Then $\Pi = \Pi_t$, and the associated set of positive roots $\Delta^+ = \Delta_t^+$.

Example 10. Let V be the n-dimensional subspace of \mathbb{R}^{n+1} $(n \ge 1)$ orthogonal to the line $e_1 + e_2 + \ldots + e_{n+1}$, where $\{e_i\}_{i=1}^{n+1}$ is an orthonormal basis in \mathbb{R}^{n+1} . The root system Δ of the type A_n in V consists of all vectors $\{e_i - e_j\}_{i \ne j}$. Check that $\Pi = \{e_1 - e_2, e_2 - e_3, \ldots, e_n - e_{n+1}\}$ is a set of simple roots, and $\Delta^+ = \{e_i - e_j\}_{i < j}$ - the associated set of positive roots in Δ .

Example 11. The root system Δ of the type C_n in $V = \mathbb{R}^n$ $(n \geq 2)$ consists of all vectors $\{\pm e_i \pm e_j\}_{i \neq j} \cup \{\pm 2e_i\}$, where $\{e_i\}_{i=1}^n$ is an orthonormal basis in \mathbb{R}^n . Check that $\Pi = \{e_1 - e_2, e_2 - e_3, \ldots e_{n-1} - e_n, 2e_n\}$ is a set of simple roots, and $\Delta^+ = \{e_i \pm e_j\}_{i < j} \cup \{2e_i\}$ - the associated set of positive roots in Δ .

Example 12. Let $V = \mathbb{R}^2$ and recall from [1], that for any two roots α, β , $n(\alpha, \beta) \cdot n(\beta, \alpha) = 4\cos^2(\phi),$

where $n(\alpha, \beta) = \frac{2\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle}$, and ϕ is the angle between α and β . Using Lemma 6, find all possible angles between the simple roots in \mathbb{R}^2 , and their relative lengths. Sketch the obtained pairs of vectors. Identify those that correspond to the root systems $A_1 \oplus A_1$, A_2 and C_2 discussed in Examples 1, 2 and 11 for n = 2. In these three cases, describe and sketch the set of all elements $t \in V$ such that $\Pi_t = \Pi$ for a given Π . This set is the dominant Weyl chamber for (Δ, Π) .

References

[1] Your classmate, Abstract root systems, preprint, MIT, 2004.