SIMPLE AND POSITIVE ROOTS

YOUR NAME HERE

18.099-18.06 CI.

Due on Monday, May 10 in class.

Write a paper proving the statements and working through the examples formulated below. Add your own examples, asides and discussions whenever needed.

Let V be a Euclidean space, that is a finite dimensional real linear space with a symmetric positive definite inner product \langle,$\rangle .$

Recall that a root system in V is a finite set Δ of nonzero elements of V such that
(1) Δ spans V;
(2) for all $\alpha \in \Delta$, the reflections

$$
s_{\alpha}(\beta)=\beta-\frac{2\langle\beta, \alpha\rangle}{\langle\alpha, \alpha\rangle} \alpha
$$

map the set Δ to itself;
(3) the number $\frac{2\langle\beta, \alpha\rangle}{\langle\alpha, \alpha\rangle}$ is an integer for any $\alpha, \beta \in \Delta$.

A root is an element of Δ.
Here are two examples of root systems in \mathbb{R}^{2} :
Example 1. The root system of the type $A_{1} \oplus A_{1}$ consists of the four vectors $\left\{ \pm e_{1}, \pm e_{2}\right\}$ where $\left\{e_{1}, e_{2}\right\}$ is an orthonormal basis in \mathbb{R}^{2}.

Example 2. The root system of the type A_{2} consists of the six vectors $\left\{e_{i}-e_{j}\right\}_{i \neq j}$ in the plane orthogonal to the line $e_{1}+e_{2}+e_{3}$ where $\left\{e_{1}, e_{2}, e_{3}\right\}$ is an orthonormal basis in \mathbb{R}^{3}. Rewrite the vectors of this root system in a standard orthonormal basis of the plane and sketch it.

Since for any $\alpha \in \Delta,-\alpha$ is also in Δ, (see [1], Thm.8(1)), the number of elements in Δ is always greater than the dimension of V. The example of type A_{2} above shows that even a subset of mutually noncollinear vectors in Δ might be too big to be linearly independent. In the present paper we would like to define a subset of Δ small enough to be a basis for V, yet large enough to contain the essential information about the geometric properties of Δ. Here is a formal definition.

Date: July 18, 2004.

Definition 3. A subset Π of Δ is a set of simple roots (a simple root system) in Δ if
(1) Π is a basis for V;
(2) Each root $\beta \in \Delta$ can be written as a linear combination of the elements of Π with integer coefficients of the same sign, that is,

$$
\beta=\sum_{\alpha \in \Pi} m_{\alpha} \alpha
$$

with all $m_{\alpha} \geq 0$ or all $m_{\alpha} \leq 0$.
The root β is positive if the coefficients are nonnegative, and negative otherwise. The set of all positive roots (the positive root system) associated to Π will be denoted Δ^{+}.

Below we construct a set Π_{t} associated to an element $t \in V$ and a root system Δ, and show that it satisfies the definition of a simple root system in Δ.

Let Δ be a root system in V, and let $t \in V$ be a vector such that $\langle t, \alpha\rangle \neq 0$ for all $\alpha \in \Delta$ (Check that such an element always exists). Set

$$
\Delta_{t}^{+}=\{\alpha \in \Delta:\langle t, \alpha\rangle>0\}
$$

Let $\Delta_{t}^{-}=\left\{-\alpha, \alpha \in \Delta_{t}^{+}\right\}$. Check that $\Delta=\Delta_{t}^{+} \cup \Delta_{t}^{-}$.
Definition 4. An element $\alpha \in \Delta_{t}^{+}$is decomposable if there exist $\beta, \gamma \in \Delta_{t}^{+}$ such that $\alpha=\beta+\gamma$. Otherwise $\alpha \in \Delta_{t}^{+}$is indecomposable.

Let $\Pi_{t} \subset \Delta_{t}^{+}$be the set of all indecomposable elements in Δ_{t}^{+}.
The next three Lemmas prove the properties of Δ_{t}^{+}and Π_{t}.
Lemma 5. Any element in Δ_{t}^{+}can be written as a linear combination of elements in Π_{t} with nonnegative integer coefficients.

Hint: By contradiction. Suppose γ is an element of Δ_{t}^{+}for which the Lemma is false and $\langle t, \gamma\rangle>0$ is minimal, and use that γ is decomposable to get a contradiction.

Lemma 6. If $\alpha, \beta \in \Pi_{t}$, then $\langle\alpha, \beta\rangle \leq 0$.
Hint: Use Thm. $10(1)$ in [1] : if $\langle\alpha, \beta\rangle>0$, then $\alpha-\beta$ is a root or 0 .
Add discussion: what does this result mean for the relative position of two simple roots?
Lemma 7. Let A be a subset of V such that
(1) $\langle t, \alpha\rangle>0$ for all $\alpha \in A$;
(2) $\langle\alpha, \beta\rangle \leq 0$ for all $\alpha, \beta \in A$.

Then the elements of A are linearly independent.
Hint: Assume the elements of A are linearly dependent and split the nontrivial linear combination into two sums, with positive and negative coefficients. Let $\lambda=\sum m_{\beta} \beta=\sum n_{\gamma} \gamma$ with $\beta, \gamma \in A$ and all $m_{\beta}, n_{\gamma}>0$. Show that $\langle\lambda, \lambda\rangle=0$.

Now we are ready to prove the existence of a simple root set in any abstract root system.

Theorem 8. For any $t \in V$ such that $\langle t, \alpha\rangle \neq 0$ for all $\alpha \in \Delta$, the set Π_{t} constructed above is a set of simple roots, and Δ_{t}^{+}the associated set of positive roots.

Hint: Use lemmas 5, 6, 7.
The converse statement is also true (and much easier to prove):
Theorem 9. Let Π be a set of simple roots in Δ, and suppose that $t \in V$ is such that $\langle t, \alpha\rangle>0$ for all $\alpha \in \Pi$. Then $\Pi=\Pi_{t}$, and the associated set of positive roots $\Delta^{+}=\Delta_{t}^{+}$.
Example 10. Let V be the n-dimensional subspace of $\mathbb{R}^{n+1}(n \geq 1)$ orthogonal to the line $e_{1}+e_{2}+\ldots+e_{n+1}$, where $\left\{e_{i}\right\}_{i=1}^{n+1}$ is an orthonormal basis in \mathbb{R}^{n+1}. The root system Δ of the type A_{n} in V consists of all vectors $\left\{e_{i}-e_{j}\right\}_{i \neq j}$. Check that $\Pi=\left\{e_{1}-e_{2}, e_{2}-e_{3}, \ldots e_{n}-e_{n+1}\right\}$ is a set of simple roots, and $\Delta^{+}=\left\{e_{i}-e_{j}\right\}_{i<j}$ - the associated set of positive roots in Δ.
Example 11. The root system Δ of the type C_{n} in $V=\mathbb{R}^{n}(n \geq 2)$ consists of all vectors $\left\{ \pm e_{i} \pm e_{j}\right\}_{i \neq j} \cup\left\{ \pm 2 e_{i}\right\}$, where $\left\{e_{i}\right\}_{i=1}^{n}$ is an orthonormal basis in \mathbb{R}^{n}. Check that $\Pi=\left\{e_{1}-e_{2}, e_{2}-e_{3}, \ldots e_{n-1}-e_{n}, 2 e_{n}\right\}$ is a set of simple roots, and $\Delta^{+}=\left\{e_{i} \pm e_{j}\right\}_{i<j} \cup\left\{2 e_{i}\right\}$ - the associated set of positive roots in Δ.

Example 12. Let $V=\mathbb{R}^{2}$ and recall from [1], that for any two roots α, β,

$$
n(\alpha, \beta) \cdot n(\beta, \alpha)=4 \cos ^{2}(\phi)
$$

where $n(\alpha, \beta)=\frac{2\langle\beta, \alpha\rangle}{\langle\alpha, \alpha\rangle}$, and ϕ is the angle between α and β. Using Lemma 6 , find all possible angles between the simple roots in \mathbb{R}^{2}, and their relative lengths. Sketch the obtained pairs of vectors. Identify those that correspond to the root systems $A_{1} \oplus A_{1}, A_{2}$ and C_{2} discussed in Examples 1, 2 and 11 for $n=2$. In these three cases, describe and sketch the set of all elements $t \in V$ such that $\Pi_{t}=\Pi$ for a given Π. This set is the dominant Weyl chamber for (Δ, Π).

References

[1] Your classmate, Abstract root systems, preprint, MIT, 2004.

